Chemistry 1983-2004 JAMB Questions

Chemistry 1983

1.	X is crystalline salt of sodium. Solution of X in water
	turns litmus red produces a gas which turns lime water
	milky when added to sodium carbonate. With barium
	chloride solution, X gives a white precipitate which is
	insoluble in dilute hydrochloric acid. X is

B. A. Na,,CO, NaHCO, C NaHSO, D Na₂SO₃

E. Na,SO,

2. The alkanol obtained from the production of soap is

> ethanol B. glycerol A.

C. methanol D. propanol

E. glycol

3. The flame used by welders in cotton metals is

butane gas flame A.

B. acetylene flame

C. kerosene flame

D. oxy-acetylene flame E. oxygen flame

4. Consecutive members of an alkane homologous series differ by

> A. CH B. CH, C. CH₃ D. C_nH_n E. CnH_{2n+2}

5. If an element has the lectronic configuration $1s^22s^22p$ $3s_2 3p_2$, itis

A. a metal

B. an alkaline earth metal

C. an s-block element

D. a p-block element

E. a transition element

6. Some copper (11) sulphate pentahydrate (CuSO₄5H₂O), was heated at 120oC with the following results: Wt of crucible = 10.00 g; Wt of crucible + CuSO₄5H₂O=14.98g; Wt of crucible + residue = 13.54g. How many molecules of water of crystallization were lost? [H=1, Cu =63.5, O=16, S=32

> A. 1 B. 2 C. 3 D. 4 \mathbf{E} 5

7. The three-dimensional shape of methane is

A. hexagonal B. tigonal C. linear tertrahedral D. cubical

E.

Question 8-10 are based on the following

An unknown organic compound X has a relative molecular mass of 180. It is a colourless crystalline solid, readily soluble in water. X contains the element C, H, and O in the atomic ratio 1:2:1. The compound has a

sweet taste and melts on heating. In the presence of yeast and in the absence of air X is converted to compound Y in the absence of air, X is converted to compound Y and colourless gas.

Compound Y reacts with sodium metal to produce a gas Z which gives a 'pop' sound with a glowing splint. Y also reacts with ethanoic acid to give a sweet smelling compound W.

8. Compound W is

B. A. a soap an oil C. an alkane D. an ester E. sucrose

9. The molecular formula of X is

C₁₂ O₂₂ 11 CHOA. B. C. CHÖ D. CHOE. C'H3O

10. reaction of X with yeast forms the basic of the

> plastic industry A. textile industry B. C. brewing industry

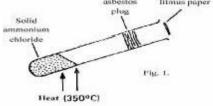
D. soap industry E. dveing industry.

11. A mixture of common salt, ammonium chloride and barium sulphate can best be separated by

A. addition of water followed by filtration then sublimation

B. addition of water followed by sublimation then filtration

C. sublimation followed byaddition of waterthen filtration


D. fractional distillation

E. fractional crystallization.

12. Which of the following relationships between the pressure P, the volume V and the temperature T, represents and ideal gas behaviors?

> P& T/V A. P&VT B. C. PT&V D. PV&VT E. P & V/T

Porcus Damp neutral asbestos litmus paper Solid ammonlun chloride

In the above experiment (fig1) the litmus paper will initially

A. be bleached B. turn green C. turn red D. turn blue

E. turn black

13.

14.	The colour imparted to a flame by calcium ion				
	is				

A. green

B. blue

C. brick-red

D. yellow

E. lilac

15. In the reaction $M+N \longleftrightarrow P$; $\triangle H = +Q kJ$. Which of the following would increase the concentration of the product?

A. Decreasing the concentration of N

B. Increasing the concentration of P

C. Adding a suitable catalyst.

D. Decreasing the temperature

16. In which of the following processes is iron being oxidized?

1. Fe +
$$H_2SO_4 \rightarrow H_2 + FeSO_4$$

2.
$$FeSO_4 + H_2S \rightarrow FeS + H_2SO_4$$

 $3 \qquad \text{FeCl} + \text{Cl}_2 \longrightarrow 2\text{FeCL}_3$

4 FeCl₃ + SnCl₂ \longrightarrow 2FeCL₂ + SnCl₄

A. 1 only B. 2 only

C. 3 only D. 1 and 3

E. 2 and 4.

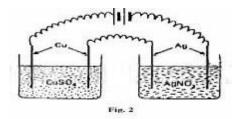


Fig.2

In the above experiment (fig.2), a current was passed for 10 minutes and 0.63 g of copper was found to be deposited on the cathode of $CuSO_4$ cells. The weight of $AgNO_3$ cell during the same period would be [Cu = 63, Ag-108]

A. 0.54 g

B. 1.08 g

C. 1.62 g

D. 2.16g

E. 3.24 g

18. In the reaction $Fe + Cu^{2+} \rightarrow Fe^{2+} + Cu$, iron displaces copper ions to form copper. This is due to the fact that

A. iron is in the metallic form while dthe copper is in the ionic form

B. the atomic weight of copper is greater than that of ion

C. copper metal has more electrons than ion metal

D. iron is an inertmetal

E. iron is higher in the electrochemical series than copper.

19.

The correct name of the compound with the above structural formula is

A. 2-methylbut-1-ene

B. 2-methylbut-2-ene

C. 2-methylbut-1-ene

D. 2-ethyprop-1-ene

E. 2-ethylprop-2-ene

20. How many isomeric forms are there for themolecular formula C₃H₆Br₂?

A. 1 C. 3 B. 2 D. 4

E. 5

21. A piece of burning sulphur will continue to burn in a gas jar of oxygen to give misty fumes which readily dissolve in water. The resulting liquid is

A. sulphur (1V) trioxide

B. Tetraoxosulphate acid (V1)

C. Trioxosulphate (1V) acid

D. Dioxosulphate (11) acid

E. Hydrogen sulphide

22. Sodium decahydrate (Na₂SO₄ 10H₂O) an exposure to air loses all its water of crystallization. The process of loss is known as

A. Efflorescence

B. Hygroscopy

C. Deliquescence

D. Effervescence

E. Dehydration

23. Which of the following happens during theelectrolysis of molten sodium chloride?

A. Sodium ion loses an electron

B. Chlorine atom gains anelectron

C. Chloride ion gains an electron

D. Sodium ion isoxidized

E. Chloride ion isoxidized.

 Crude petroleum pollutant usuallyseen on some Nigeria creeks and waterways can be dispersed or removed by.

A. heating the affected parts order to boil off the petroleum

B. mechanically stirring to dissolve the petroleum in water

C. pouring organic solvents to dissolve the petroleum

D. spraying the water with detergents

E. cooling to freeze out thepetroleum.

25. An element is electronegativeif

A. it has a tendency to exist in the gaseousform

B. its ions dissolve readily in water

C. it has a tendency to lose electrons

D. it has a tendency to gain electrons

E. it readily forms covalent bonds

26. Solution X,Y, and Z have pH values 3.0, 5.0 and 9.0 respectively. Which of the following statements is correct?

A. All the solution areacidic

B. All solution are basic

C. Y and Z are more acidic than water

D. Y is more acidic than X.

E. Z is the leastacidic

27. In the reactions

$$(1) H2(g) + 1$$

$$2 O_2(g) H_2O(1); H = -2.86kJ$$

(11) $C(s) + O_2(g)$ $CO_2(g)$; H= -406kJ

the equations imply that

	A.	more heat is absorbed heat is evolved in (1)		D.	Column chroma	atograph	y	
	B.	more heat is absorbed in (11)		E.	Evaporation			
	C.	less heat is evolved in (1)						
	D.	reaction (11) proceeds faster than(1)	35.	Increa	asing the pressure of	of a gas		
	E.	reaction (1) proceeds faster than (11)		A.		_	etic energy of the	
28.	Which	of these metals, Mg, Fe, Pb, and Cu will dissolve		B.	decreases the d	ensity of	the gas	
		ite HCI?		C.	decreases the te	-	_	
	A.	All the metals		D.	increases the de			
	B.	Mgm Fe, and Cu		E.	increases the vo		_	
	C.	Mg, Fem and Pb						
	D.	Mg and Fe only	36.	2.5 g	of a hydrated bariu	m salt ga	ave on heating, 2.13 g	
	E.	Mg only					the relative molecular	
					•		208, the number of	
29.	Stainle	ess steel is an alloy of					tion of the barium salt	
	A.	Carbon, iron and lead		is				
	B.	Carbon, ion andchromium		A.	10	B.	7	
	C.	Carbon iron and copper		C.	5	D.	2	
	D.	Carbon, iron and silver		E.	1			
	E.	Carbon and iron only						
		•	37.	3.06 g	g of a sample of pota	assium tı	rioxochlorate	
30.	What	volume of 0.50 MH ₂ SO ₄ will exactly neutralize					ce a saturated solution	
		of 0.1 M NaOH solution?		with 1	0cm3 of water at 2	5°C. The	solubility of the salt at	į
	A.	2.0 cm^3 B. 5.0 cm^3			s [K=39, CI=35.5,0		2	
	C.	6.8 cm^3 D. 8.3 cm^3		A.	5.0 moles dm ³	В.	3.0 moles dm^3	
	E.	$10.4~\mathrm{cm}^3$		C.	2,5 moles dm ³	D.	1.0 moles dm ³	
				E.	0.5 moles dm_3			
31.		of the following pair of gases will NOT react				_		
		r with oxygen at a temperature between 30°C and	38.			eryimpo	rtant in the petroleum	
	400°C				try because it			
	A.	SO_2 and NH_3 B. CO_2 and H_2		A.	gives purer pro			
	C.	NO_2 and SO_3 D. SO_3 and NO		B.	Yields morelub			
	E.	CO and H ²		C.	Yields more eng		8	
				D.	Yields more asp			
32.		metals are extracted from their ores after some		E.	Yield more cand	le wax		
	-	ninary treatments by electrolysis (L) some by						
		al reaction(T) and some by a combination of both	39.	_			ucing agent towards	
		sses(TL). Which set-up in the following for the				ızıng ag	ent toward hydrogen	
		tion of iron copper and aluminum is correct?		sulph		_		
	A.	Iron (L), copper (L) m aluminum (T)		A.	O_2	В.	NO	
	B.	Iron (T), copper (L), aluminum(T)		C.	SO_2	D.	NH_3	
	C.	Ion (TL), copper (TL), aluminium (TL)	40	E.	CO ₂	. 14:		
	D.	Iron (L), copper (T), aluminium (T).	40.		Which if the following solution will give a precipitate with barium chloride solution a			
	E.	Ion (T), copper (L), aluminium (TL).		flame		moriae	solution and a green	
22	T., 41, .			A.	Na2SO ₄	B.	CuSO4	
33.		preparation of some pure crystals of Cu (NO ₃) ₂		C.	CaSO ₄	D.	CaCI,	
		ng with CuO, a student gave the following nents as steps he employed. Which of these shows		E.	$(NH_4)_2 SO_4$	D.	CaCi ₂	
		in his report?		L.	$(111_4)_2 50_4$			
	A.	Some CuO was reacted with excess dilute	41.	The n	nass of an atomis d	etermine	ed by	
	A.	H,SO ₄	71.	A.	its ionization po		Cd by	
	В.	The solution was concentrated		В.	its electrochem		ntial	
	C.	When the concentrate was cooled, crystals		C.	the number of p			
	٥.	formed were removed by filtration.		D.	the number of r		and protons	
	D.	The crystals were washed with very cold water		E.	the number of r		-	
	E.	The crystals were then allowed to dry.		Δ.				
	₽.	The organis were then thowed to dry.	42.	Whic	h ofthe following i	s neutral	ization	
34.	Which	n of the following seperation processes is most		reacti	_			
٠		to yield high qualityethanol (>95%) from palm		A.	Addition of chl	oride sol	lution	
	wine?	of James and Against Company to the balling		В.			(V) acid (nitricacid)	
	A.	Fractional disllation without a dehydrant		٠.	to distilledwate		()a (mareaera)	
	В.	Simple distillation without a dehydrant		C.			(V) acid (nitricacid)	
	C.	Fractional distillation with a dehydrant		٠.			acid (sulphuric acid).	
	٠.				т	(• -)	r	

- D. Addition of trioxonirate (V) (potassium nitrate) solution
- E. Addition of trioxonirate (V) acid (nitricacid) potassium hydroxide solution.
- 43. A jet plane carrying 3,000 kg of ethane burns off all the gas forming water and carbondioxide. If all the

carbondioxide is expelled and the water formed is condensed and kept on board the plane, then the gain in weight is

- A. 1,800kg B. 900kg C. 600kg D. 2,400 kg
- E. 1,200kg
- 44. Liquid X, reacts with sodium trioxocarbonate (IV) (Na₂CO₃) to give a gas which turns calcium chloride solution milky. X is
 - A. Na₂SO4 (aq) B. KI (ag) C. An alkali D. An acid
 - E. A hydrocarbon.
- 45. Which of the following statements is FALSE?
 - A. copper (11) ion can be reduced to copper (1) ion by hydrochloric acid and zinc.
 - B. Sodium metal dissolves in water givingoxygen
 - C. Nitrogen is insoluble inwater
 - D. Carbondioxide is soluble in water
 - E. Lead has a higher atomic weight than copper
- 46. When sodium dioxonitrate (111) (HaNO \) dissolvesis
 - A. Exothermic B. Endothermic C. Isothermic D. Isomeric
 - E. Hydroscopic
- 47. The equilibrium reaction between copper (1) chloride and chloride at 25°C and 1 atmosphere is represented by the equation:

 $2CuCI_2 + CI_2 \longrightarrow 2CuCI_2H = -166kJ$. Which of the following statement is TRUE for the reaction, pressure remaining constant.

A. More CuCI₃ is formed at 40°C

- B. More CuCI₂ is formed at 10°C
- C. Less CuCI² is formed at 10°C
- D there is no change $CuCI_2$ formed at $40^{\circ}C$ and $10^{\circ}C$
- E. More CuCl is consumed at 40°C
- 48. $Zn + H^2SO_{\frac{1}{4}} > ZnCI + H_{\frac{2}{4}}$

The rate of the above reaction will be greatly increased if.

- A. the zinc is in the powered form
- B. a greater volume of the acid is used
- C. a smaller volume of the acid is used
- D. the reaction vessel is immersed in an ice-bath
- E. the zinc is in the form of pellets.
- 49. $\operatorname{Zn} + \operatorname{H}_{2}\operatorname{SO}_{4} \longrightarrow \operatorname{ZnSO}_{4} + \operatorname{H}_{4}$

In the above reaction how much zinc will be left undissolve if 2.00 g of zinc treated with 10cm₃ of 1.0 M

- of H_2SO_4 ? [Zn =65, S=32, O = 16, H = 1]
- A. 1.35 g B. 1.00 g C. 0.70 g D. 0.65 g
- E. 0.06g
- 50. 30cm3 of 0.1 M AI(NO3)3 solution is reacted with 100cm3 of 0.15M of NaOH solution. Which is in excess and by how much?
 - A. NaOH solution, by 70cm3
 - B. NaOH solution, by 60cm3
 - C. NaOH solution by 40cm3
 - D. AI $(NO^3)^3$, solution by 20cm3
 - E. AI $(NO^3)^3$ solution, by $10cm^3$

Chemistry 1984

- 1. Sodium chloride may be obtained from brineby
 - A. titration
- B. decantation
- C. distillation
- D. evaporation
- E. sublimation
- 2. 20cm³ of hydrogen gas are sparked with 20cm³ of oxygen gas in an eudiometer at 373K (100°C) and 1 at atmosphere. The resulting mixture is cooled to 298 K (25°C) and passed over calcium chloride. The volume of the residual gas is
 - A. 40cm^3
- B. 20cm^3
- C. 30cm^3
- D. 10cm^3
- E. 5 cm₃

- 3. For the reaction $NH_4NO_2 \rightarrow N_2 + 2H_2O$ calculate the volume of nitrogen that would be produced at S.T.P from 3.20 g of the trioxonirate (111) salt.
 - A. $2.24 \, \text{dm}^3$
- B. $2.24 \, \text{cm}^3$
- C. 1.12cm^3
- D. 1.12dm^3
- E. 4.48dm^3
- (Relative atomic masses: N = 14m O = 16, H=1).
- Manganese (1V) oxide reacts with concentrated hydrochloric acid according to the equation MnO + xHCI → MnCI + CI +yHO. x and y are
 - A. 2 and 5 respectively
 - B. 2 and 4 respectively

C.	and 2 respectively
D.	4 and s2 respectively
E.	4 and 1 respectively

5. A molar solution of caustic soda is prepared by dissolving

A. 40 g NaOH in 100 g of water

B. 40 g NaOH in 1000 g of water

C. 20 g NaOH in 500 g of solution

D. 20 g NaOH in 1000 g of solution

E. 20 g NaOH in 80 g of solution.

6. Which among the element 1. Carbon 2. Oxygen 3. Copper 4. Bromine 5. Zinc will NOT react with either water of stream?

A. 1 and 2

B. 2 and 3

C. 3 and 4

D. 1, 2, and 3

E. 2, 3 and 5

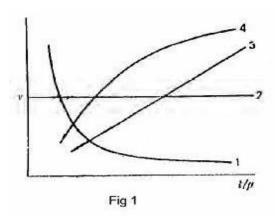


Fig 1

Which of the curves shown in fig 1 represents the relationships between the volume (v) and pressure (p) of an ideal gas at constant temperature?

A. 1 C. 3 B. 2 D. 4

E. 1 and 3

8. Naphthalene when heated melts at 354K (81°C). At this temperature the molecules of naphthalene.

A. decompose into smallermolecules

B. change their shape

C. are oxidized by atmospheric oxygen

D. contract

E become mobile as the inter molecular forces are broken.

9. The ration of the number of molecules in 2g of hydrogen to that in 16 g of oxygen is

A. 2:1

B. 1:1

C. 1:2

D. 1:4

E 1:8

10. Which combination of the following statements is correct?

1. lowering the activation energy

2 conducting the reaction in a gaseous state

3. increasing the temperature

4. removing the products as soon as they are formed

5. powdering the reactant if solid

A. 1,2 and 3

B. 1, 3 and 5

C. 2, 3 and 5

D. 3 and 4

E. 3 and 5

The balance equation for the reaction of tetraoxosulphate (V1) acid with aluminium hydroxide to give water and aluminium tetraoxosulphate (V1) is

A. $H_2SO_4 + AISO_4 \rightarrow 2H_2O + AISO_4$

B. $HSO_4 + AIOH \rightarrow H_2O + AISO4$

C. $3H2SO_4 + 2AIH_3 \rightarrow 6H2OH + AI(SO_4)_3$

D. $3H2SO4 + 2AI(OH)3 \rightarrow 6H2O + AI(SO_4)_3$

E. $H_2SO_4 + AI(OH)_2 \rightarrow H_2O + AI_2(SO4)_2$

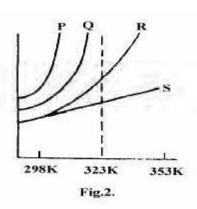


Fig. 2.

The solubility curves of four substances are shown in Fig.2. Which of the four substances would crystallize from a saturated solution cooled from 353 K (80°C) to 323 K(50°C)

D.

A. P and Q

B. P and R

R and S

C. P and SE. Q and R.

13. which of the following mixtures would result in a solution of pH greater than 7?

A. 25.00 cm³ of 0.05 M H₂SO₄and 25.00 cm³ of

0.50 m Na₂CO₃ 25.00 cm³ of 0.50 M H SO and 25;00 cm³ of

 $\rm C.^3$ 0.10 M NaHCO₃ and 25.00 cm³ of 25.00 cm of 0.11 M H₂SO₄

D. 0.10M NaOH 25.00 cm³ of 0.11 M H SO and 50.00 cm³ of 0.50 M NaOH

E. 25.00 cm³ of 0.25 MH₂SO₄ and 50.00 cm³ of) .20 M NaOH

14. In which of the following reactions does hydrogen peroxide acts as a reducing agent?

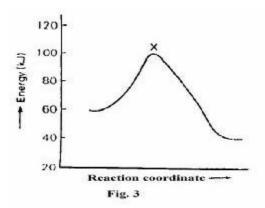
A. $H_1S + H_2O \rightarrow S + 2H_2O$

B. $PbSO_3 + H_2O_3 \longrightarrow PbSO_4 + H_2O_3$

C. $2'! + 2H + H_2O \longrightarrow I_2 + 2H_2O$

D. $PbO_2 + 2HNO_3 + H_2O_2 \longrightarrow Pb (NO_3)_2 + 2H_2O_2 + O_2$

E. $SO + H_2O_2 \longrightarrow H_2SO_4$


15. For the reaction $2Fe + 2^{e-} \longrightarrow 2Fe^{2+} + I_2$, which of the following statements is TRUE?

A. Fe is oxidized to Fe₃

B. Fe^{3+} is oxidized to Fe^{2+}

- C. I is oxidized to I
- D. I- is reduced to I₂
- I is displacing an electron from Fe³⁺ E.

16.

The diagram above (Fig.3) shows the energy profile for the reaction A+B=C+D. form this diagram, its clear that the reaction is

- spontaneous A.
- B. isothermal
- C. adiabatic
- D. exothermic
- E. endothermic
- 17. In dilute solute the heat of the following NaOH + HCI = $NaCI + H_2O + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2Ois$
 - A. +28.65 kJ
- B. -28.65kJ
- C. +57.3 kJ
- D. -114.6 kJ
- -229.2 kJ E.
- 18. For the reactions: (1 Melon oil + NaOH ! Soap + Glycerol (11) 3Fe + $4H2OFe_3O_4 + 4H_2$ (111) N_2O_4 2NO₂. Which of the following statements is true?
 - Each of the three reactions requires a catalyst A.
 - B. All the reactions demonstrate Le Chatelier's principle
 - C. The presence of a catalyst will increase the vield of products
 - D. Increase in pressure will result in higher yields of the products in 1 and 11 only
 - E. Increase in pressure will result in higher of the products in 111 only.
- 19. Which of the following methods may be used to prepare trioxonirate (V) acid (nitric acid) in the laboratory?
 - A. Heating ammonia gas with tetraoxosulphate
 - B. Heating ammonium trioxosulphate (V) with tetraoxonitrate (V)acid
 - C. Heating sodium trioxonirate (v) with tetraoxosulphate (V1) acid
 - Heating potassium trioxonirate (V) with calcium D. hydroxide.
 - E. Heating a mixture of ammonia gas and oxygen\
- 20. Lime -water, which is used in the laboratory for the detection of carbon (1V) oxide, is an aqueous solution of:
 - A. Ca (OH),
- B. CaCO,
- C. CaHCO₂
- D.
- CaSO₄
- E. N,CO,

- 21. An element that can exist in two or more different structure forms which possess the desame chemical properties is said to exhibit
 - polymerism A.
- В. isotropy
- C. isomorphism
- D. isomerism
- E. allotropy.
- 22. Sulphur....
 - A. Forms two alkalineoxides
 - B. Is spontaneously flammable
 - C. Burns with a blue flame
 - Conducts electricity in the molten state D.
 - E. Is usually stored in the form of sticks in water.
- 23. Which off the following statements is NOT true of carbon monoxide?
 - CO is poisonous A.
 - CO is readily oxidized at room temperature by B. air to form Co₂
 - CO may be prepared by reducing CO₂, mixed C. coke heated to about 1000°C
 - D. CO may be prepared by heating charcoal with a limited amount of O₂
 - E. CO is a good reducing agent.
- 24. From the reactions:

 $ZnO + Na_{2}O \rightarrow Na_{2}ZnO$ and

 $ZnO+CO^{2} \rightarrow ZnCO^{3}$ it may be concluded that zinc oxide is

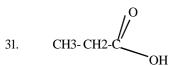
- A. B. basic neutral
- amphoteric C. D. acidic
- Е a mixture
- An example of a neutral oxide is 25.
 - A. AL,O,
- В. NO,
- C. CO,
- D. CO
- E SO,
- $3CI_2 + 2NH_3 \rightarrow N_2 + 6HCI$. In the above reaction, 26. ammonia acts as.
- A. a reducing agent
 - B. an oxidizing agent
 - C. an acid
 - D. a catalyst
 - E. a drying agent
- 27. In the Haber process for the manufacturer of ammonia, finely divided iron is used as
 - A. an ionizing agent
 - a reducing agent B.
 - C. a catalyst
 - a dehydrating agent D.
 - E. an oxidizing agent.
- 28. An organic compound with a vapour density 56.5 has the following percentage composition: C = 53.1%, N =12.4%, O = 28.3%, H = 6.2%. The molecular formula of the compound is
 - A. $C_2H_2O_2N$ C. $(C_5H_7O_7N)^{1/2}$
- B. C₅H₆O₅N
- D. C₅H₇O₂N
- E. $(C_5H_7ON)_2$
- Relative atomic masses: N = 12.4%, O = 28.3%, H = 1)

29.	The	hybridization	of the	carbon	atom in	ethyne is
	Α.	Sp^		B.	sp^3	•

C.

D. sp

E.

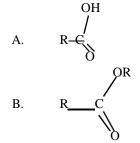

30. When the kerosene fraction form petrol is heated at high temperature, a lower boiling liquid is obtained. This process is known as

D.

A. polymerization C. hydrogenation refining

cracking

E. fractional distillation



Is

- В. A. acetic acid propanal
- C. D. propanol ethanoic acid

E. propanoic acid

- Alkaline hydrolysis of naturally occurring fats and oils 32. yields.
 - A. fats and acids
 - B. soaps and glycerol
 - C. margarine and butter
 - D. esters
 - E. detergents.
- 33. Which of the following represents a carboxylicacid?

- C. H2SO4.
- D. R - COOCOR

- which of the statement is INCORRECT? 34.
 - A. fractional distillation of crude petroleum will give following hydrocarbon fuels in order of increasing boiling point: Butane < petrol < kerosene
 - B. $H_2C = CH_2$ will serve as a monomer in the preparation of polythene
 - C. Both but -1- ene and but -1-1yne willdecolorize bromine readily.
 - D. But -2 ene will react with chlorine to form 2, 3 dichlorobutane.
 - E. Calcium carbide will react with water to form any alkayne

- 35. which of the following statement is NOT correct about all four of the acids: HBr, HNO₃H₂CO₃and H₂SO₄? They
 - dissolve marble to liberate litmus red A.
 - B. have a pH less than 7
 - C. turn blue litmusred
 - D. neutralize alkalis to form salt
 - E. react with magnesium to liberate hydrogen.
- 36. If the cost of electricity required to deposit 1 g old magnesium is N5.00. How much salt would it cost to deposit 10 g of aluminium?

A. N10.00 B. N27.00

C. N44.44 D. N66.67

E. N33.33.

(Relative atomic masses: AI = 27, Mg = 24).

37, In an experiment, copper tetraoxosulphate (V1) solution was electolysed using copper electrodes, The mass of copper deposited at the cathode by the passage of 16000 coulombs of electricity is

A. 16.70g

17.60g

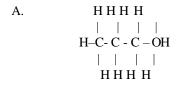
C. 67.10g

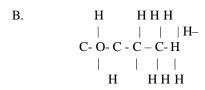
D. 10.67g

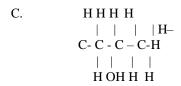
E. 60.17g

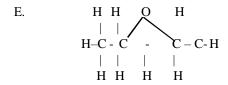
(Relatively atomic masses: Cu = 63.5 m O = 16,

$$H = 1, S = 32$$
).


- 19. Which of the following 38. statements is NOT true of the elements R, U, S, T, Y?
 - R is an isotope of hydrogen A.
 - B. U and Y are isotopes
 - C. R.U.S and T are metals
 - D. T is a noble gas
 - S will react with oxygen to form SO E.
- 39. Nitrogen can best be obtained from a mixture of oxygen and nitrogen by passing the mixture over
 - A. potassium hydroxide
 - B. heated gold
 - C. heated magnesium
 - D. heated phosphorus
 - E. calcium chloride.
- 40. Water is said to be 'hard' if it
 - A. easily formsice
 - B. has to be warmed before sodium chloride dissolves in it
 - C. forms an insoluble scum with soar
 - D. contains nitrates
 - E. contains sodium ions.
- 41. Sodium hydroxide (NaOH) pellets are


A. deliquescent


B. hygroscopic


C. efflorescent D. hydrated

- E. fluorescent.
- 42. Which of the following structure formulae is NOT numeric with others?

- 43. Alkalines
 - A. are all gases
 - B. have the general formula $C_n H_{2n} + Q_2$
 - C. contains only carbon and hydrogen
 - D. are usually soluble inwater
 - E. are usually active compounds.
- 44. If an excess of a liquid hydrocarbon is poured into a jar of chlorine, and the sealed jar is then exposed for several hours to bright sunlight, all the chlorine gas is consumed. The hydrocarbon is said to have undergone
 - A. a polymerizationreaction
 - B. an isomerization reaction
 - C. an addition reaction
 - D. a substitution reaction
 - E. a reduction reaction
- 45. The function of conc. H₂SOH₄ in the etherification of ethanoic acid with ethanol is to
 - A. serves as a dehydrating agent
 - B. serves as solvent
 - C. act as a catalyst
 - D. prevent any side reaction
 - E. serve as an oxidizing reaction

- A piece of sea shell, when dropped into a dilute solution of hydrochloric acid produces a colourless odorless gas, which turns clear limewater milky. The shell contains
 - A. sodium chloride

46.

- B. ammonium nitrate
- C. calcium carbonate
- D. calcium chloride
- E. magnesium chloride
- 48. An aqueous solution of a metal salt, Mm gives a white precipate with NaOH, which dissolves in excess NaOH. With aqueous ammonium the solution of M also gives a white precipate which dissolves in excess ammonia. Therefore the caution in M is

A.
$$Zn^{++}$$

- B. Ca⁺⁺
- C. AI⁺⁺⁺
- D. Pb⁺⁺
- E. Cu^{++}
- 49. The I.U.P.A. C name for the compound

$$\begin{array}{c} H \\ | \\ CH-C-CH_2-CH_3 \\ | \\ CH_3 \text{ is} \end{array}$$

- A. isopropylethene
- B. acetylene
- C. 3-methylbutane
- D. 2-methybutane
- E. 5-methypentane.
- 50. At S.T.P how many litres of hydrogen can be obtained from the reaction of 500cm³ of 0.5 M H₂SO₄ excess zinc metal.

- B. 11.2 dm₃
- C. 6.5 dm₃
- D. 5.6 dm₃
- E. 0.00dm₃

(Gram molecular volume of $H2 = 22.4 \text{ dm}_3$)

Chemistry 1985

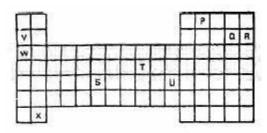
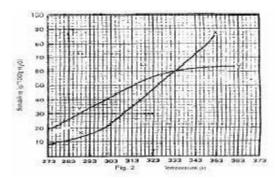



Fig. 1

- 1. Figure shows part of the periodic Table. Which of the elements belongs to the p-block?
 - S.T and U. A.
 - B. V, W and X
 - C. S and T only
 - D. P, Q and R
 - E. V,W,X andS.
 - Which of the following conducts electricity? 2
 - A. Sulphur
- B. Graphite
- C. Diamond
- D.
 - Red phosphorus
- E. Yellow phosphorus.
- An organic compound contains 72% carbon 12% 3 hydrogen and 16% oxygen by mass. The empirical formula of the compound is
 - C₆H₂₂O₃ A.
- $C_6H_{10}O_3$
- C_1, H_1, O C.
- $C_6H_{12}O$ D.
- E. C₂CH₁₀
- (H=1, C=12, O=16).
- 0.499 of CuSO .xH O when heated to constantweight 4
 - gave a residue of 0.346 g. The value of x is A. 0.5 B.
 - C. 3.0
- 2.0 D. 4.0
- E 5.0.
- (Cu = 63.5, S = 32.0 O = 16, H = 1).
- 5. In an experiment which of the following observation would suggest that a solid sample is a mixture? The
 - solid can be ground to a fine powder A.
 - density of the solid 2.25 g dm-3 B.
 - C. solid begins to melt until 648 K
 - D. solid absorbs moisture from the atmosphere and turns into aliquid
 - E. solid melts at 300 K.
- 6 Hydrogen diffuses through a porous plug
 - A. at the same rate as oxygen
 - B. at a slower rare than oxygen
 - C. twice as fast as oxygen
 - D. three times as fast as oxygen
 - E. four times as fast as oxygen.
 - 1. Given the molecular mss of iron is 56 and that of oxygen is 16, how many moles of Iron (111) oxide will be contained in 1 kg of the compound?

- A. 25.0 moles
- B. 12.5 moles D.
- C. 6.25 moles
- 3.125 moles
- E. 0.625 moles
- 8. 3.0 g of a mixture of potassium carbonate and potassium chloride were dissolved in a 250cm³ standard flask. 25 cm₃ of this solution required 40.00cm³ of 0.1 M HCI for neutralization. What is the percentage by weight of K₂CO₃ in themixture?
 - A. 60
- В.
- 72
- C. 82 D. 89 E. 92 (K = 39, O = 16, C = 12).
- Figure 2 below represents the solubility curb\ves of two salts, X and Y, in water. Use this diagram to answer question 9 to 11

- 9. At room temperature (300K)
 - Y is twice as soluble as X Α.
 - В. X is twice as soluble as Y
 - C. X and Y soluble to the same extent
 - D. X is three times as soluble as Y
 - Y is three times as soluble as X
- 10. If 80 g each of X and Y are taken up in 100g of water at 353 K we shall have.
 - only 10 g of X and Yundissolve A.
 - only 16 g of Y undissolve B.
 - C. 10 g of X and 16 g of Y undissolved
 - D. all X and Y dissolved
 - E. all X and Yundissolved
- 11. If the molar mass of X is 36 g, the number of moles of X dissolved at 343 is
 - A. 0.2 moles
- B. 0.7 moles
- C. 1.5 moles
- D. 2.0 moles
- E. 3.0 moles
- 12. Some properties of chemical substances are mentioned below (i) solar taste (ii)slippery to touch (iii)yields alkaline gas with ammonium salts (iv) has pH less than 7 (v) turns phenolphthalein pink. Which of the above are NOT typical properties of alkaline?
 - (i), (iv) and(v) A.
 - B. (iv) and (v)

	C.	(i) and (iv)					n monoxide and l				
	D.	(ii) and (v)				proba	ble source(s) of the				
	E.	(ii), (iii) and (v)			A.	automobile		and 1	biological	
							decomposition				
13.				K is heated such that		B.	combustion of			e exhaust	
				our times the original		C.	biological dec	-	•		
		s. What is the new	-			D.	combustion of			khaust and	
	A.	18.6K	В.	100.0K			biological dec				
	C. E.	298.0K 47689.0K	D.	1192.0K		E.	combustion of decomposition		d biolog:	ical	
14.		ogen is not liberat with zinc becaus		rioxonirate (v) acid	21.		rect electrochemi a, Ca, Al, Mg, Zn				
	A.	Zinc is render		by the acid			hanging	, 1 0, 1 0, 1	ı, cu, 11g,	Ag, Au by	
	В.			xidized towater		A.	Al and Mg	B.	Zn and	Fe	
	C.	Oxides of nitr				C.	Zn and Pb	D.	Pb and		
	D.	All nitrates are				E.	Au and Hg.				
	E.	trioxonitrate v	acid is a s	trong acid.			_				
					22.		rtain industrial p				
15.				ethanol, toluene and			ical equation 2A(
				383.6 K and 372.5 K			mol ⁻ . Which of the following conditions will favour the				
			iquid has	the highest vapour		•	of the product?		. 1		
	•	ire at 323.0K?	D	Tolyana		A.	Increases in the pressure.	ie tempera	iture, aeci	rease in	
	A. C.	water Ethanol	B. D.	Toluene Butan-2-ol		B.	Increase in ter	mnerature	increase i	n nressure	
	E.	None	D.	Dutaii-2-01		C.	Decrease in te	_		_	
16.			vo drv sar	nples of nitrogen gas		D.	Decrease in ter				
10.				les 1 is prepared by		E.	Constant temp				
				from air and sample 2	22	23.6	-		- C1 OXX		
				itrogen (i) oxide over	23.		$D_4^- + 10Cl^- + 16H +$		2 2	<u> </u>	
	heated	d copper? Sample					bstances serves a			:?	
	A.	purer than san				A.	Mn^{2+}	B.	Cl ⁻		
	B.	slightly dense				C.	H_2O	D.	MnO_4		
	C. D.	in all respects				E.	Cl_2				
	Б. Е.	slightly less re	eactive tha	has a light brown. n sample 2	24.	In the	reaction HO '!	$H2 + \frac{1}{2}O2$	2 H=-2	2436000kJ ² ,	
		z8,z					of the following	(g)	(g)		
17.	Coppe	er sulphate solutio	n is electro	olyzed using platinum		positi	_	nas no en	ect on the	equinorium	
17.				mperes is passed for		A.	Adding argon	to the syst	em		
		How many grams				В.	Lowering the t				
	Α		B.	0.500 g		C.	Adding hydro				
	C		D.	0.914g		D.	Decreasing the	-	3		
	E	. 1.00 g (Cı	a = 63.5 m	F = 96500 coulombs		E.	Increasing the		re.		
10	** **	\a.			25		6.1 6.11	. 1	1. 1		
18.	a cata		ibrium read	ction. The addition of	25.		of the following to on of iron(11) tetr		-	Iron from a	
			int of W n	roduced in a given		A.	copper	B.	mercur	W	
		me	ant or vv p	roduced in a given		C.	silver	D.	Zinc	y	
			change in	concentrations of X,		E.	Gold	Δ.	Zine		
		andZ		,							
	C. ir	creases the rate of	of disappe	arance of X and Y	26.	Comp	olete hydrogenatio	on of ethyr	ne yields		
		ncreases the rate of				A.	benzene	B.	methar	ne	
				and Y left after the		C.	ethene	D.	propan	.e	
	at	ttainment ofequil	ibrium.			Е.	Ethane				
10	3371 ·	1 a 41 a 42 a 42 a 44 a 45 a 46 a 46 a 46 a 46 a 46 a 46		-11-4- if11' (C)	27.		h of the following	g is used in	the manu	itacture of	
19.				allate if gallium (Ga)			hing powder?	la.	D	ahlawi	
		san oxidation nur				A. C.	sulphur dioxid		B.	chlorine	
	A. C.	NaGaO ₃ B.	Na ₂ G(D.	hydrogen tetr hydrogen sul		ait		
	C. E.	NaGa(OH) ₃ NaGaO	D.	NaGa (OH) ₄		E.	nitrogen dioxi				
						-		-			
20.				he atmosphere over a	28.		an suspected to be				
	city ar	e oxides of nitrog	en suspen	ded lead compounds,		breath	n into acidified po	tassium di	chromate	solution. If	

has breath carries a significant level of ethanol, th	ıe
final colour of the solution is.	

D.

A. Pink

B. P

Purple

Blue-black

C. OrangeE. Green.

A 2 hort

33.

A. 2-butanone

B. 2-butanal

ΗН

C. butane

D. butanoic acid

E. 3-butanal.

29. When pollen grains are suspended in water and viewed through a microscope, they appear to be in a state of constant but erratic motion. This is due to

A. convection currents

B. small changes in pressure

C. small changes intemperature

 a chemical reaction between the pollengrains and water

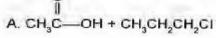
E. the bombardment of the pollen grains by molecules ofwater.

30. The energy change (H) for the reaction $CO_{(g)} + \frac{1}{2}O2_{(g)} \longrightarrow CO2_{(g)}$ is

A. -503.7 kJ

B. +503.7 kJ

C. –282.9 kJ


D. +282.9 kJ

E. +393.3 kJ

D. 1202.7 No

 $(Hi(CO) = -110.4 \text{ kJ mol}^{-1} (Hi(CO)_{2} = -393 \text{ kJ mol}^{-1})$

31. The product formed on hydrolysis of

32. The neutralization reaction between NaOH solution and nitrogen (1V) oxide (NO₂) produces water and

A. NaNO₂ and NaNO₃

B. NaNO₃ and HNO₃

C. NaNO,

D. NaNO₃

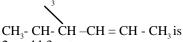
E. NaN₂O₃

34. Tetraoxosulphate (V1) ions are finally tested using

CH₃

The oxidation of CH- CH- C- O gives

A. acidified silver nitrate


B. acidified barium chloride

C. lime – water

D. dilute hydrochloric acid

E. acidified lead nitrate

35. The I.U.P.A.C name for the compound

2-methl-3-patene

B. 4-methy-2-pentane

C. 2-methl-2-penten

A.

D. 4-methyl-3-pentene

E. 2-methyl-3-pentane

36. Mixing of aqueous solution of barium hydroxide and sodium tetraoxocarbonate(1V) yields a white precipitate of

A. barium oxide

B. sodium tetraoxocarbonate(1V)

C. sodium, oxide

D. sodium hydroxide

E. barium tetraoxocarbonate.

37. An organic compound decolorized acidified KMnC₄ solution but failed to react with ammoniacal silver nitrate solution. Theorganic compound is likely to be.

A. a carbonxyllic acicd

B. an alkane

C. an alkene

D. an alkyne

E. an alkanone

38. Solid sodium hydroxide on exposure to air absorbs a gas and ultimately gives another alkaline substance with the molecular formula.

A. NaOH.H₂O

B. NaOH.N₂

C. Na₂CO₃

D. NaHCO₃

E. NaNO₃

39. Which of the following is the functional group of carboxylic acids?

A. -OH

B. >C=O

C. >C-OH

D. -C

E. -C = N

40.		h of the following		nces is the most	46.				acid to an aqueous		
	A. C.	Carbon Water	B. D.	Air Oxygen		and a		dichron	nate paper green. The		
	E.	Hydrogen tion 41 and 42 are				A. C.	Na ₂ SO ₄ NaS ₂ O ₃ .5H ₂ O	B. D.	Na ₂ S NaCO ₃		
	A col	ourless organic con	npound	X was burnt in exces ourless grass, Y and Z	47.		E. NaHCO ₃ The process involved in the conversion of an oil				
		~		ize bomine vapour; Y	.,.		arine is known as		ersion of an on mio		
		lime milky while Z etraoxosulphate (V		lue colour with copper		A. C. E.	hydrogenation hydrolysis cracking	B. D.	condensation dehydration		
41.	_	oound X is			40						
	 A. an alkene B. an alkane C. an alkyne D. tetra chloromethane E. Dichloromethane 				48.	An aqueous solution of an inorganic salt gave whit precipate (i) soluble in excess aqueous NaOH (ii insoluble in excess aqueous NH ₃ (III) with dilute HCl. The caution present in the inorganic salt is A. NH3, B. Ca ⁺⁺					
42.	V and	IZ arerespectively.				C. E.	N^{++} Pb^{++}	D.	Al^{+++}		
.2.	A. C. E.	CO ₂ and NH ₃ SO ₂ and H ₂ O SO ₂ and NH ₃	B. D.	CO and NH ₃ CO ₂ and H ₂ O	49.	Whic	h of the following r ap preparation? It		sodium chloride play		
43.			e parent	nds is NOT the correct metal is heated in air?		A. B. C.	reacts with glycerol purifies the soap accelerates the decomposition of the fat oil				
	B. C.	Sodium oxide(N Copper (11) oxid	de (CuO)			D. E.	separates the soap form the glyc converts the fat acid to its sodium				
	D. E.	Tri-iron tetroxic			50.		The function of sulphur during the vulcanization rubber is to .				
44.	has t			ent whose caution, X2+, nic configuration is		A. act as catalyst for the polymerization of molecules					
	A.	2P 38 2p 18 16	B.	18		В.	plastic polymer		rmosetting tio thermo		
	C. E.	20 24	D.	22		C.			rubber molecules		
45.	When	n marble is beated t	o 1473 k	K, another whiter solid		D. E.	break down rul		vmermolecule of rubber polymer.		
	is obt		vigorou	sly with water to give		L.	shorten the che	an lengu	or rubber polymer.		
	C. E	$Mg(OH)_2$ $Ca(OH)_2$	D.	Zn(OH) ₂							
				Chemis	try	1986	5				
1.		novement of liquid quid gaseous phase Brownian mov	above i	es from the surface of t is known as	3.	10cm ³ of hydrogen fluoride gas reacts with 5cm ³ of dinitrogen difllouride gas (N E) to form 10cm ³ of a single gas. Which of the following is the most likely equation to the reaction?					
	B.	Condensation									
	C. D.	Evaporation Liquefaction				A. B.	$HF + N_2F_2 \longrightarrow 2HF + N_2F_2 \longrightarrow$				
2.				M (atomic mass= 40) hloric acid to liberate		C. D.	$2HF + N_2F_2 \longrightarrow$ $HF + 2N_2F_2 \longrightarrow$	$N_2H2\bar{F}_4$			

2.

would react with excess hydrochloric acid to liberate 22 cm³ of dry hydrogen gas measured as S.T.P?

B.

D.

4.0 g

 $0.4\,\mathrm{g}$

8.0 g

C. $0.8 \,\mathrm{g}$ [G. M. V = 22.4 dm³]

A.

The number of atom chlorine present in 5.85 g of NaCI 4. is

> 6.02×10^{22} A.

B. 5.85×10

6.02 x 10²²⁹ C.

 5.85×10^{24} D.

[Na = 23, Cl = 35.5]

Avogadro's Number = 6.02×10^{23}]

5. How much of magnesium is required to react with 250cm³ of 0.5 M HCl?

> A. $0.3\,\mathrm{g}$

В. 1.5 g

C. 2.4g D. 3.0g

[Mg = 24]

200cm3 of oxygen diffuse through a porous plug in 50 6. seconds. Hoe long will 80 cm3 of methane (CH4) take to diffuse through the same porous plug under the same conditions?

> A. 20 sec

B. 20 sec

C. 14 sec D. 7 sec

[C=12, O=16, H=1]

7. The relationship between the velocity (U) of gas molecules and their relative molecule mass (M) is shown by the equation

 $\hat{U} = (kM) \frac{1}{2}$ Α

 $\hat{\mathbf{U}} = (\mathbf{k}\mathbf{M})^2$ B.

 $\hat{\mathbf{U}} = {}^{k}$ C.

 $\hat{\mathbf{U}} = {\binom{m}{k}} \frac{1}{2}$ D

8. An element with atomic number twelve is likely to be

A. electrovalent with a valency of 1

B. electrovalent with a valency of 2

C. covalent with a valency of 2

D. covalent with a valency of 4

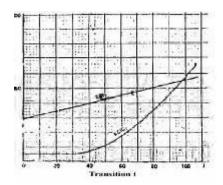
9. Which of the following group of physical properties increases form left to right of the periodic table? 1 lonization energy 2 Atomic radius 3 Electronegativity 4 Electron affinity

A. 1 and 2

1, 2 and 3

C. 3 and 4 D. 1, 2, 3 and 4

10. When 50 cm³ of a saturated solution of sugar (molar mass 342.0 g) at 40°C was evaporated to dryness, 34.2 g dry of solid was obtained. The solubility of sugar of 40°C is

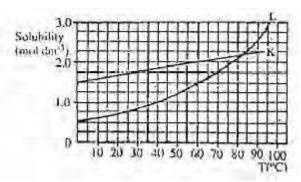

A. 10.0 moles dm⁻³

7.0 moles dm⁻³ B.

C. 3.5 moles dm⁻³ D.

2.0 moles dm⁻³

11.



In the solubility curve above, water at 98oC is saturated with KCl impurity in the crystals formed when the solution is cooled to 30oC?

NaHSO₄,Ph<5 Na₂CO₃,Ph>8 A. B.

C. Na₂Cl, Ph=7

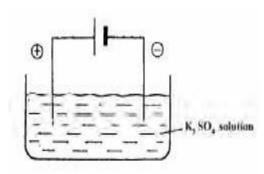
D. NaHCO₃, Ph<6

13. Which of the following is an acid salt?

> A. NaHSO,

Na,SO,

C. CH₃CO₂Na D. Na₂S


Which of the following solution will conduct theleast 14. amount of electricity?

> 2.00 M aqueous solution of NaOH A.

> B. 0.01 M aqueous solution of NaOH

C. 0.01 m aqueous solution of hexaonic acid

D. 0.01 M aqueous solution of sugar.

In the electrolysis of aqueous solution of K₂SO₄ in the above cell, which species migrate to the anode?

A. C.

15.

SO 2- and OH-OH⁴ and H O

В. D.

K⁺ and SO² H O and K⁺

16. How many coulombs of electricity are passedthrough a solution in which 6.5 amperes are allowed to runfor 1.0 hour?

> 3.90×10^2 coulombs A.

> 5.50×10^3 coulombs B.

> 6.54 x 10³ coulombs C.

2.34 x10⁴ coulombs D.

17. Which of these represents a redox reaction?

A.
$$AgNO_3 + NaCl \rightarrow AgCl + NNO_3$$

B. $H2s + Pb(NO_3)_2 \rightarrow PbS + 2HNO_3$

B.
$$H2s + Pb(NO_3) \rightarrow PbS + 2HNO$$

 $CaCO_3 \rightarrow CaO + CO_2$ C.

 $Zn + 2HCl \rightarrow ZnCl_2 + H_2$ D.

18.	How many electrons are transferred in reducing one atom of Mn in the reaction $MnO_2 + 4HC1 \rightarrow MnCl_2 + 2H_2O + Cl_2$			26.	The exhaust fumes from a garage in a place that uses petrol of high sulphur content are bound to contain A. CO and SO ₃					
	A.	2	B.	$\frac{3}{3}$		В.	CO and SO ₂			
	C.	4	D.	5		C.	CO, SO_2 and S	SO.		
						D.	CO and H ₂ S	, 0 3		
19.	20 cm ³	of 0.1 molar NH4	10H solu	tion whenneutralized		ъ.				
1).				iberated 102 Joules of	27.	Oxyg	en-demanding wa	astes are co	onsidered to be	a water
				lization of NH ₄ OH			ant because they			
	A.	-51.0 kJ mol ⁻¹	B.	+57.3 kJ mol ⁻¹		A.	deplete oxyge		necessary fo	r the
	C.	+57.0kJ mol ⁻¹	D.	+57.3 kJ mol +51.0kJ mol -1			survival of aq			
	C.	TJ / .OKJ IIIOI	D.	TJ1.0KJ IIIOI		B.	increase oxyg			or the
20.	Whati	s the consequence	of incre	acing proceure on		Δ.	survival of ac		•	or tire
20.	the equ	illibrium reaction	ZnO + F	asing pressure on I Zn + H O		C.	increase othe			are
	A.						necessary for	-	_	
	A. B.	The equilibrium				D.	deplete other			
	Б. С.	The equilibriun There is no effe		n to the right		ъ.	necessary fo	-	-	
							organisms.	i tiic sui	vivai oi aqua	itic
	D.	More ZnO _(s) is p	roduced				organisms.			
21.	The ap		e of air c	ontaining 10cm of	28.		h of the followin m a higher oxide?		t further with	oxygen
	A.	$20\mathrm{cm}^3$	B.	$25\mathrm{cm}^3$		A.	NO and H,O			
	C.	$50\mathrm{cm}^3$	D.	$100\mathrm{cm}^3$		В.	CO and CO ₂			
						C.	SO ₂ and NO			
22.	The re	action Mg + H ₂ O-	→ MgO	+ H ₂ takes placeonly		D.	CO ₂ and H ₂ O			
		presence of	. 8	2 *** *** • • • • • • • • • • • • • • •			2 2 2			
	Α.	excess Mg ribb	on		29.	In the	course of an ex	xperiment,	two gases X	X and Y
	B.	excess cold wat				were	produced. X turr	ned wet le	ad ethanoate	to black
	C	very hot water				and Y bleached moist litmus paper. What are the				are the
	E.	steam				eleme	ents(s) in each of	the gases X	and Y respec	ctively?
						A.	H and S;Cl			
23.	When	steam is passed th	rough re	d hot carbon, which		B.	H and O; Cl			
		following are prod	_	,		C.	H and S;C an	dO		
	A.			en and carbon(1V)		D. H and Cl;S and O				
	В.	Hydrogen a	and carbo	on (1V) oxide	30.	Which of the following sulphides is inso				n dilute
	C.	Hydrogen a	and carbo	on (11) oxixde		HCl?				
	D.	Hydrogen a	and triox	ocarbonate(1V) acid		A.	Na ₂ S	B.	ZnS	
						C.	CuS	D.	FeS	
24.	Which	of the following	g contair	ns an efflorescent, a						
			hydro	scopic substance	31.		chlorine is pass			equently
	respec					expos	ed to sunlight, th	e gas evol		
	А. В.	Na2SO4, conce	ntrated F	I SO CaCl		& :	HC1	₿:	HOC1	
	ъ.	$Na_2CO_3.H_2O_3$	FeSO ₂ .7	H ₂ O, concentrated			2		2 2	
		H2SO4	_	-						
	C.	Na ₂ CO ₃ . 10H ₂ C	FeCl ₃ c	oncentrated H ₂ SO ₄	32.		h of the following	g metals do	es NOT form	a stable
	D.	Concentrated H	I ₂ SO ₄ , FeS	SO ₄ .7H ₂ O,MgCl ₂			carbonate(1V)	_		
						A.	Fe	В.	Al	
25.				obtained bytitrating		C.	Zn	D.	Pb	
			-	titration was repeated				_		
	with th	e same sample of	water aft	er boiling.	33.		h of the following			
		5 6 1 111		0 1 111			ater only. When			
E:1 (-	3\	Before boilin		After boiling			evolved which			
Final (c		25.0		20.0		-	ng into concentra	-	+	1S.
Initial(cm ³)	10.00		15.0		A.	NaHS	B.	Na ₂ SO ₃	
	The #-	tio of narmanart	o tomas	com hordness is		C.	NaS	D.	NaHSO ₃	
		tio of permanent t	_	=	24	۸	onio godia	د اساد ما الم	with	
	A.	1:5	B.	1:4	34.		onia gas is norm	-		
	C.	4:1	D.	5:1		A.	concentrated	surphuric	aciu	
						B.	quicklime	laines 11	mi d a	
						C. D.	anhydrous ca		nue	
						D.	magnesium s	шрпаце,		

35.	What are the values of x, y and z respectively in the equation $xCu + yHNO_3 \longrightarrow xCu(NO_3)_2 + 4H_2O + zNO?s$ A. 4:1:2						
	В.	3:8:2					
	C.	2;8;3					
	D.	8;3;2					
36.	The iro	on (111) oxide impurity in bauxite can be removed					

- 36. The iron (111) oxide impurity in bauxite can be removed by
 - A. fractional crystallization in acidsolution
 - B. dissolution in sodium hydroxide and filtration
 - C. extraction with concentrated ammonia and reprecipitation
 - D. electrolysis of moltenmixture.
- 38. A white solid suspected to be lead trioxonirate (V), zinc trioxocarbonate(1V) of calcium trioxocarbonate (1V) was heated strongly. Its residue, which was yellow when hot and white when cold, is

A. lead (11) oxide B. calcium oxide C. zinc oxide D. lead nitrite

39. Which of the following compounds would give lilac fame coloration and a white precipitate with acidified barium chloride solution?

 $\begin{array}{ccccc} A. & KCl & B. & NaNO_3 \\ C. & K,SO & D. & CaSO_4 \end{array}$

- 40. How will a metal X, which reacts explosively with air and with dilute acids be best extracted from its ores?
 - A. Electrolysis of the solution of its salt
 - B. Decomposition of its oxide
 - C. Displacement from solution by an alkali metal
 - D. Electrolysis of fused salt
- 41. Which of the following is NOT correct for the named organic compound in each case?

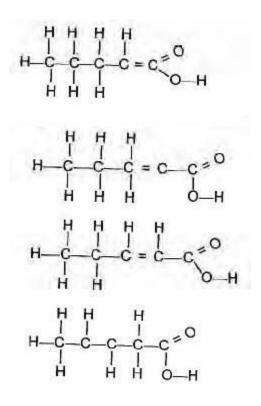
A. Butanoic ed solution gives effervescence B.

Glucose when reacted with Na CrO at 0 C will show immediate discharge of colour

C. When but-2-ene is reacted with dilute solution of KmnO4 the purple colour of KMnO is discharge readily even at room temperature

D. When butan-2-ol is boiled with Butanoic acid with a drop of concentrated H₂SO₄ a sweet smelling liquids isproduced.

- 42. Which of the following is used as an 'anti-knock' in automobile engines?
 - A. Tetramethyl silane
 - B. Lead tetra-ethyl
 - C. Glycerol
 - D. N-heptanes
- 43. What reaction takes place when palm-oil is added to potash and foams are observed?
 - A. Neutralization
 - B. Saponification
 - C. Etherification
 - D. Salting-out


44. How many isomers can be formed from organic compounds with the formula C₃H₈O?

A. 2 B. C. 4 D.

45. Which of the structural formula for pent-2-enoic acid?

3

5

- 46. When ethanol is heated with excess concentrated sulphuric acid, theethanol is
 - A. oxidized to ethene
 - B. polymerized to polyethene
 - C. dehydrated to ethene
 - D. dehydrated to ethyne.
- 47. Which of the following compounds is NOT formed by

the action of chlorine on methane?

A. CH₃Cl B. C₂H₃Cl C. CH₂Cl₂ D. CHCl₃

48. The general formula of an alkyl halide (where X represent the halide)is

 $\begin{array}{ll} A. & C_n H_{2n} \hbox{-}{}_2 X \\ C. & C_n H_{2n} \hbox{+}{}_2 X \end{array}$

B. $-C_nH_{2n} + {}_1X$ D. C.H. X

49. Which of the following are made by the process of polymerization?

A. Nylon and soap B. Nylon and rubberC. Soap and butane D. Margarine and Nylon

50. Starch can converted to ethyl alcohol by

A. distillation

B. fermentation

C. isomerization

D. cracking.

Chemistry 1987

1.	A brand of link containing cobalt (11), copper (11) and
	irons can best be separated into its various components
	hv

A. fractional crystallization

B. fractional distillation

C. sublimation

D. chromatography.

2. Which of the following substances is a mixture?

Granulated sugar A.

B. Sea-water

C. Sodium chloride

D. Iron fillings

3. The number of molecules of carbon (1V) oxideproduced when 10.0 g CaCO₂ is treated with 0.2 dm³ of 1 M HCl in the equation $CaCO_3 + 2HCI \longrightarrow CaCl_2 + H_2O + CO_2$ is

 1.00×10^{23} A.

 6.02×10^{23} B.

C. 6.02×10^{22}

D. $6.02 \times 10_{23}$ [Ca= 40, O= 16, C= 12, N_A= 6.02×10^{2} , ³H= 1, Cl= 35.5]

4. In the reaction
$$CaC \xrightarrow{2(s)} + 2HO \xrightarrow{2(1)} Ca (OH + CH) \xrightarrow{2(s)} 22$$

what is the mass of solid acetylene gas at S.T.P?

3.8 g A. C. 2.0 g

В. 2.9 g

D $1.0 \mathrm{g}$

 $[C = 12, Ca - 40, G.M.V = 22400 \text{ cm}^3]$

5. If the quality of oxygen occupying a 2.76 liter container at a pressure of 0.825 atmosphere and 300 K is reduced by one-half, what is the pressure exerted by the remaining gas?

> 1.650 atm A. C. 0.413 atm

B. 0.825 atm D. 0.275 atm

6. Which of the following substances has the lowest vapour density?

A. Ethanoic acid

Propanol

C. Dichlomethane D. Ethanal

B.

[O = 16, Cl = 35.5, H = 1, C = 12]

7. If d represents the density of a gas and K is a constant, the rate of gaseous diffusion is related to the equation

A. r = kd

B. r = kd

C.

r = k dD.

An isotope has an atomic number of 17 and a mass 8. number of 36. Which of the following gives the correct number of neutrons and protons in an atom of the isotope?

	Neutrons	Protons
A.	53	17
B.	17	36
C.	19	17
D.	36	17

9. The atomic numbers of two elements X and Y are 12 and 9 respectively. The bond in the compound formed between the atoms of these two elements is.

> A. ionic

B convalent

C. neutral D. co-ordinate.

An element Z, contained 90% of ¹⁶_° Z and 10% of ¹⁸_° Z 10. Its relative atomic mass is

> A. 16.0

B. 16.2

C. 17.0

17.8 D.

11. The greater the difference in electronegativity between bonded atoms, the

> A. lower the polarity of the bond

higher the polarity of the bond

C weaker the bond

higher the possibility of the substance formed being a molecule.

12. A stream of air was successively passed through three tubes X, Y, and Z containing a concentrated aqueous solution of KOH, red hot copper powder and fused calcium chloride respectively. What was the composition of gas emanating from tube Z?

CO₂ and the inert gases

N, CO and the inert gases N² and the inert gases B.

Ċ.

D. Water vapour, N, and the inert gases.

13. In the purification of town water supply, alum is used principally to.

> A. kill bacteria

B. control the pH ofwater

C. improve the taste of the water

D. coagulate small particles of mud.

14. Which of the following water samples will have the highest titer value wages titrated for the Ca²⁺ ions using soap solution?

> A. Permanently hard water after boiling

> B. Temporarily hard water after boiling

C. Rain water stored in a glass jar for two years

D. Permanently hard water passed through permutit

15. Oil spillage in ponds and creeks can be cleaned up by

> Α. burning off the oil layer

> B. spraying with detergent

C. dispersal with compressed air

D. spraying with hot water.

16. The solubility of $Na_3AsO_4(H_2O)_{12}$ is 38.9 g per 100 g H2O. What is the percentage of Na₃AsO₄ in the saturated solution?

> A. 87.2%

B. 38.9%

19.1% C.

D. 13.7%

[As = 75, Na = 23, O = 12, H = 1]

17. Which is the correct set results for tests conducted respectively on fresh lime and ethanol?

Test	Fresh lime juice	Ethanol
A. Add crystals of NaHCO ₃	Gas evolve	No gas evolved
B. Test with methyl orange	Turns colourless	No change
C. Taste	Bitter	Sour
D. Add a piece of sodium	No gas evolved	H ₂ evolved

- 18. In which of the following are the aqueous solutions of each of the substances correctly arranged in order of decreasing acidity?
 - Ethanoic acid, milk of magnesia, sodium A. chloride, hydrochloric acid and sodium hvdroxide.
 - B. Ethanoic acid hydrochloric acid, milk of magnesiam sodium chloride and sodium, hydroxide.
 - C. Hydrochloric acid, ethanoid acid solution chloride, milk of magnesia and sodium hydroxide
 - D. Hydrochloric acid sodium hydroxidesodium chloride ethanoic acid and milk of magnesia
- The basicity of tetraoxophosphate (v) acid is 19.
 - A. C. 4

- 5 B. 3 D.
- If 24.83 cm³ of 0.15 M NaOH is tritrated to its end 20. point with 39.45 cm3 of HCl, what is the molarity of the HC1?
 - 0.094 MA.
- B. 0.150 M
- C. 0.940M
- D. 1.500 M
- 21. A quantity of electricity liberates 3.6 g of silver from its salt. What mass of aluminium will be liberated from its salt by the same quantity of electricity?
 - $2.7\,\mathrm{g}$
- B. $1.2\,\mathrm{g}$
- C. $0.9\,\mathrm{g}$
- D. 0.3g
- 22. Which of the following statements is CORRECT if 1 Faraday of electricity is passed through 1 M CuSO₄ solution for 1 minute?
 - A. The pH of the solution at the cathode decreases
 - B. The pH of the solution at the anode decreases
 - C. 1 mole of Cu will be liberated at the cathode
 - D. 60 moles of Cu will be liberated at the anode.
- What mass of magnesium would be obtained by 23. passing a current of 2 amperes for 2 hrs. 30mins through molten magnesium chloride?
 - 1.12g $2.24\,\mathrm{g}$
- $2.00\,\mathrm{g}$ $4.48\,\mathrm{g}$
- [1 faraday = 96500 coulombs, Mg = 24]
- In the reaction of $3\text{CuO} + 2\text{NH}_3 \longrightarrow 3\text{Cu} + 3\text{H}_2\text{O} + \text{N}_2$ 24. how many electrons are transferred for each mole to copper produced?
 - 4.0×10^{-23} A.
- B. 3.0×10^{-23}
- 1.2×10^{24} C.
- D. 6.0 x 10²⁴

- 25. Z is a solid substance, which liberates carbon (1V) oxide on treatment with concentrated H₂SO₄, KnnO₄. The solid substance, Z is
 - sodium hydrogen trioxocarbonate(1V) .A.
 - B. ethanoic acid
 - C. iron (11) trioxocarbonate(1V)
 - D. ethanedioc acid (oxalicacid)
- 26. 5 g of ammonium trioxonirate (V) on dissolution in water cooled its surrounding water and container by 1.6kJ. What is the heat of solution of NH₄NO₂?
 - A. +51.4 kJ mol⁻¹
- +25.6 kJ mol⁻¹ B.
- +12.9 kJ mol⁻¹ C.
 - D. -6.4 kJ mol⁻¹

$$[N = 14, O = 16, H = 1]$$

- 27. Tetraoxosulphate (1V) acid is prepared using the chemical reaction $SO_{3(g)} + H_2O_{(F)}H_2SO_{4(1)}$. Given the heat of formation for $SO_{3(g)}$, $H_2O_{(1)}$ and $H_2SO_{4(1)}$ as -395kJ mol-1 -286 kJ mol-1 and -811 kJ mol-1 respectively is
 - A. -1032kJ
- B. -130kJ
- C. +130kJ
- D. +1032kJ
- 28. The times taken for iodine to be liberated in the reaction between sodium thisosulphate and hydrochloric acid at various temperatures are asfollows:

Temp°C	25	35	45
Time (seconds)	72	36	18

These results suggest that.

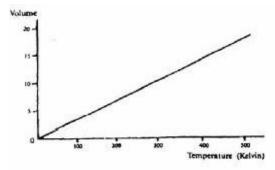
- for a 10° rise in temperature rate of reaction is A.
- B. for a 10° rise in temperature rate of reaction is
- C. time taken for iodine to appear does not depend on temperature
- for a 10° rise in temperature, rate of reaction is D. tripled.
- 29. The reaction between sulphur (1V) oxide and oxygen is represented by the equilibrium reaction

 $2SO_{2(g)}H + O_{2(g)} \longrightarrow 2SO_{3(g)}H = -196 \text{ kJ. What factor}$ would influence increased production SO_{3(o)}?

- A. Addition of a suitable catalyst
- B. Increase in the temperature of the reaction
- C. Decrease in the temperature of $SO_{2(n)}$
- Decrease in the concentration of SO₂₍₉₎ D.
- 30. Which of the following equations correctly represents the action of hot concentrated alkaline solution on chlorine?
 - $\begin{array}{c} \text{Cl}_{2(g)} + 2\text{OH}_{(g)} \xrightarrow{\hspace{1cm}} \text{OCl}_{(q)} + \text{Cl}_{(q)} + \text{H}_2\text{O}_{(1)} \\ 3\text{Cl}2(g) + 6\text{OH} \xrightarrow{\hspace{1cm}} \text{ClO}_{3(aq)} + 5\text{Cl} \ (aq) + 3\text{H}_2\text{O}_{(1)} \\ 3\text{Cl} + 6\text{OH}(aq) \ \text{ClO}_{2(g)} + 5\text{Cl}_{1} + 3\text{HO} \\ \end{array}$ A.
 - В. C.
 - D. $3C12(g) + 6OH(aq) \longrightarrow 5C1O3(aq) + C1 (aq)$ $+3H2O_{(1)}$
- 31. Magnesium ribbon was allowed to burn inside a given gas P leaving a white solid residue Q. Addition of water to Q liberated a gas which produced dense white fumes with a drop of hydrochloric acid. The gas Pwas
 - A. nitrogen
- В. chlorine
- C. oxygen
- D. sulphur (1V) oxide

32.	The best treatment for a student who accidentally poured concentrated tetraoxosulphate(V1) acid on his skin in the laboratory is to wash he skinwith A. cold water B. sodium trioxocarbondioxide solution C. Iodine solution D. Sodium triocarbonate (1V) solution.	41. A.	Which of the following compounds will give a precipitate with an aqueous ammoniacal solution of copper (1) chloride? CH ₃ CH=CHCH ₃ B. CH ₃ C——CCH ₃ C. CH=C—CH ₂ CH ₃ D. CH ₂ =CH-CH-=CH ₂
33.	In which of the following pairs of elements is allotropy exhibited by each element? A. Phosphorus and hydrogen B. Oxygen and chlorine C. Sulphur and nitrogen D. Oxygen and sulphur.	42. 43.	The efficiency of petrol as a fuel in high compression inetrnal combustion engines improves with an increase in the amount of A. Branched chain alkanes B Straight chain alkanes C. Cycloalkanes D. Halogenated hydrocarbons A palm wine seller stoppered a bottle of his palm wine
34.	Which of the following gases can best be used for demonstrating the fountain experiment? (i) Nitrogen (ii) Ammonia (iii) Nitrogen (I)oxide (iv) Hydrogen chloride A. (ii) and (iii) B. (i) and (iii) C. (ii) and (iv) D. (ii) only.		in his stall and after a few hours the bottle represents the reaction that occurred? A. C H O $\stackrel{\text{enzymes}}{\rightarrow}$ C H OH + 2CO B. C $\stackrel{\text{ch}}{\rightarrow}$ CH2 = $\stackrel{\text{ch}}{\rightarrow}$ CH2 = $\stackrel{\text{ch}}{\rightarrow}$ CH2 = $\stackrel{\text{ch}}{\rightarrow}$ CH2 = $\stackrel{\text{ch}}{\rightarrow}$ CH3 OSO OH C. C $\stackrel{\text{ch}}{\rightarrow}$ CH $\stackrel{\text{ch}}{\rightarrow}$ CH3 OH3 + $\stackrel{\text{ch}}{\rightarrow}$ CH3 OH4
35.	 When calcium hydroxide us heated with ammonium tetraoxosulphate (V1), the gas given off may be collected by A. bubbling it through concentrated H₂SO₄. B. Bubbling it through water and then passing it through calcium oxide C. Passing it directly through calcium oxide D. Passing it directly through calcium chloride. 	44.45.	ethanol reacts with aqueous sodium mono-oxoio date(1) to gives a bright yellowsolid with a characteristic smell. The products is A. trichlomethane B. ftriiodomethane C. iodoethane D. ethanal The most volatile fraction obtained from fractional
36.	Which of the following elements will form oxide which will dissolve both dilute HNO_3 and $NaOH$ solution to form salts? A. Cl B. Mg C. Ag D. Mn		distillation of crude petroleumcontains A. butane propane and kerosene B. butane propane and petrol C. ethane, methane and benzene D. ethane methane and propane
37.	Stainless steel is an alloy of A. iron, carbon and silver B. ironm carbon and lead C. iron, carbon andchromium D. iron and carbon only.	46. 47.	Local black soap is made by boiling palm with liquid extract of ash. The function of the ash is to provide the A. acid B. ester of alkanoic acid C. alkali D. alkanol Synthetic rubber is made by polymerization of
38.	Alloys are best prepared by. A. high temperature are welding of the metals B. electrolysis using the major metallic component as cathode C. reducing a mixture of the oxides of the elements D. cooling a molten, mixture of the necessary	48.	 A. 2 methylbuta-1,3-diene B. 2 methl buta-1, 2 – diene C. 2 methyl buta – 1-ene D. 2 methy buta –2-ene Complete oxidation of propan – 1 – of gives A. propanal
39.	elements. Corrosion is exhibited by. A. iron only		B. propan-2-LC. propan-1-oneD. propanoic acid
40	 B. electropositive metals C. metals belowhydrogen in the electrochemical series D. all metals 	49.	When water drops are added to calcium carbide in a container and the gas produced is passed called and A. oxyethylene flame B. oxyhydrocarbon flame C. oxyacetylene flame
40.	 Inspite of the electronic configuration, 1s²2s₂p2², carbon is tetravalent because A. the electrons in both 2s and 2p orbital have equal energy B. the electrons in both 2s and 2p orbital are equivalent C. both the 2s and 2p orbital hybridize D. the six orbital hybridize to four. 	50.	D. oxymethane flame. The structure of benzoic acid is.

Chemistry 1988



- 1. In the experiment above, ammonium chloride crystals deposit on the walls of the tube is as a result of
 - A. Evaporation
 - B. Recrystallization
 - C. Sublimation
 - D. Fractional precipitation.

MX

- 2. The formula of the compound formed in a reaction between a trivalent metal M and a tetravalent non-metal X
 - is. A.
- C. M_4X_2
- D.
- 2.25 g of sample of an oxide of a copper. 2.50 g of another 3. oxide of Copper on reduction also gave 2.0 g of copper. These results are in accordance with the law of
 - A. constant composition
 - B. conversation of matter
 - C. multiple proportions
 - D. definite proportions.
- One role of propane is mixed with five moles of oxygen. 4. The mixture is ignited and the propane burns completely. What is the volume of the products at soap?
 - 112.0 dm^3 A.
- B. 67.2 dm^3
- C. $56.0 \, dm^3$
- 44.8 dm³ D.
- $[G.M.V = 22.4 \text{ dm}^3 \text{mol}^{-1}]$
- 5. 0.9 dm³ of a gas at s. t. p was subjected by means of a movable piston to two times the original pressure with the temperature being now kept at 364 K. What is the volume of the gas in dm³ at this pressure?
 - 2.0 A.
- 4.5
- C. 6.0
- B. D. 8.3

Which of the gas laws does the above graph illustrate?

- A. Boyle B. Charles C. Graham D. Gay-lussac
- 7, An increase in temperature causes an increase in the pressure in the
 - A. average velocity of the molecules
 - number of collisions between the molecules В.
 - C. density of the molecules
 - D. free mean path between each molecules and other.
- 8. The forces holding naphthalene crystal together can be overcome when naphthalene is heated to a temperature of 354 K resulting in the crystals melting. These forces are known as.
 - coulombic A.
- B. ionic
- C. covalent
- D. van der waals
- A metallic ion X²⁺ with an inert gas structure contain 18 9. electrons. How many protons are there in this ion?
 - 20 A.
- B. 18
- C. 16
- D. 2
- 10. Which of the following physically properties decreases across the periodic table.
 - Ionization potential A.
 - B. Electron affinity
 - C. Electronegativity
 - Atomic radius D.
- 11. What are the possible oxidation numbers for an element if its atomic is 17?
 - -1 and 7 A.
- B. -1 and 6
- C. -3 and 5
- D. -2 and 6
- 12. The energy change accompanying the addition of an electron to a gaseous atom is called
 - A. first ionization energy
 - B. second ionization energy
 - C. electron affinity
 - D. electronegativity
- 13. The molar ratio of oxygen to nitrogen in dissolved air is 2:1 whereas the ratio is 4:1 in atmospherics air because
 - nitrogen is less soluble than oxygen A.
 - oxygen is heavier than nitrogen B.
 - C. nitrogen has a higher partial than pressure in
 - D. gases are hydrated in water.
- 14. An eruption polluted an environment with a gas suspected to H₂S, a poisonous gas. A rescue team should spray the environment with
 - water A.
 - B. moist SO₂
 - C. acidified KmnO₄ andwater
 - water, acidified KnnO₄ and oxygen. D.

15.	1.34 g of hydrated sodium tetraoxosulphate (V1) was
	heated to give an anhydrous salt weighing 0.71g. The
	formula of thehydrated salt.

A. Na,SO₄.7H₂O

B. Na₂SO₄.3H₂O

C. Na₂SO₄·2H₂O

D. Na₂SO₄·H₂O.

 $[Na = 23, S = 32, \tilde{O} = 16, H=1].$

16. The ion that may be assumed to have negligible concentration in a sample of water that lathers readily with soap is

A. Mg²⁺ C. CO²⁻

B. K⁺ HCO

17. A substance S is isomorphous with another substance R. When a tiny crystal of R,

A. S dissolves in the solution

B. Crystals of R are precipitated

C. There is no observable change

D. R and S react to the generate heat.

18. Which of the following dilute solutions has thelowest pH value?

A. Calcium trioxocarbonate(1V)

B Sodium trioxocarbonate(1V)

D. hydrochloric acid

E. ethanoic acid

19. Which of the following in aqueous solution neutralize litmus?

A. NH₄Cl

B. Na,CO,

C. FeCl₃

D. NaCl.

20. What volume of a 0.1 M H₃PO will be required to neutralize 45.0cm³ of a 0.2 M NaOH?

A. $10.0 \,\mathrm{cm}^3$

B. 20.0cm³

C. 27.0cm^3

D. 30.0cm³

21. Which of the following substances is a basic salt?

A. Na,CO,

B. Mg(OH)Cl

C. NaCHO

D. K₂SO₄.Al₂(SO₄)₃.24H₂O.

22. Which of the following acts both as reducing and an oxidizing agent?

A.

В.

 H_2

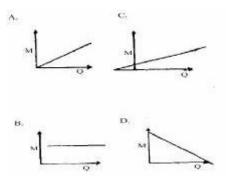
 SO_2

C. H₂S

D. C

B.

23. Which of the following reactions takes place in the cathode compartment during the electrolysis of copper (11) chloride solution?


A. $Cu^{2+}_{(aq)} + 2e \longrightarrow Cu(s)$

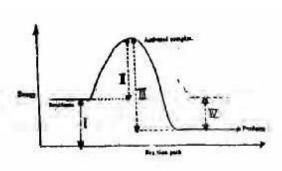
 $\underbrace{\operatorname{cu}(s)}_{s} 2e_{2e} \xrightarrow{\operatorname{Cl}^{2}_{2+}} \operatorname{Cl}^{2}_{2+}$

D. $Cu^{2+}_{(aq)} + 2Cl^{(aq)} CuCl_{2(ar)}$

24. The mass of a substance, M liberated at an electrode during electrolysis is proportional to the quantity of

electricity. G passing through the electrolyte. This is represented graphically by.

25. A mixture of starch solution and potassium iodide was placed in a test tube. On adding dilute tetraoxosulphate (V1) acid and then K₂Cr₂O₇ solutions, a blue-blackcolour was produced. In this reaction, the


A. iodine ion isoxidized

B. tetraoxosulphate(V1) acid acts as an oxidizing agent

C. starch has been oxidized

D. $K_2Cr_2O_7$ is oxidized.

26.

Which of the following statements is TRUE?

A. The dissolution of NaOH $_{(s)}$ in water is endothermic

B. The heat of solution of $NaOH_{(s)}$ is positive

C. The NaOH_(s) gains heat from the surroundings.

D. The heat of solution of $NaOH_{(s)}$ is negative.

28. Which of the following will produced the greatest increase in the rate of the chemical reaction represented by the equation

by the equation Na S O $_{2\,2\,3\text{(aq)}}^{}+2\text{HCl}$ $_{(a}$ $\rightarrow_{q}^{}2\text{NaCl}$ $_{(aq)}^{}+\text{HO}$ $_{2\,(1)}^{}+\text{SO}$ $_{2(g)}^{}+\text{S}$ $\stackrel{?}{\underset{(s)}{}}$

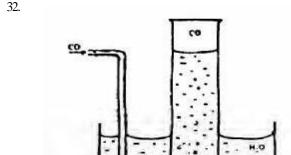
A. decrease in temperature and an in increase in the concentration of the reactants

B. An increase in the temperature and a decrease in the concentration of the reactants

C. An increase in the temperature and an increase in the concentrations of the reactants

D. A decrease in the temperature and a decrease in the concentration of the reactants.

29. Which property of reversible reaction is affected by a catalyst?


A. heat content(enthalpy)

B. energy of activation

C. free energy change

A. equilibrium position.

- 30. Which of the following is used in fire extinguishers?
 - A. Carbon (11) oxide
 - B. Carbon (1V) oxide
 - C. Sulphur (1V) oxide
 - D. Ammonia
- 31. When H₂S gas is passed into a solution of iron (111) chloride, the colour changes from yellow to green. This is because.
 - A. H_2S is reduced to S
 - B. Fe^{3+} ions are oxidized by H.S
 - C. H₂S ions are oxidized by Fe³⁺
 - D. Fe^{3+} ions are reduced to Fe^{3+} ions

Carbon (11) oxide may be collected as shown above because it

- A. is heavier than air
- B. is less dense than air
- C. is insoluble inwater
- D. burns in oxygen to form carbon(1V)oxide.
- 33. In the reaction $C_5H_{10}O_{5(s)}$ 60/ $_{(s)}$ + 5H₂O concentrated H_2SO_4 is acting as
 - A. a reducing agent
 - B. an oxidizing agent
 - C. a dehydrating agent
 - D. a catalyst
- 34. Suitable regents for the laboratory preparation of nitrogen are
 - A. sodium trioxonirate (III) and ammonium
 - B. sodium trioxonirate(V) and ammonium chloride
 - C. sodium chloride and ammonium trioxonirate (V)
 - D. sodium chloride and ammonium trioxonirate(lll)
- 35. The thermal decomposition of copper (ll) trioxonirate (V) yields copper (ll) oxide, oxygen and
 - A. nitrogen (ll) oxide
 - B. nitrogen(ll) oxide
 - C. nitrogen (IV) oxide
 - D. nitrogen
- 36. Chlorine is produced commercially by
 - A. electrolysis of dilute hydrochloric acid
 - B. electrolysis of brine
 - C. neutralization of hydrogen chlorine
 - D. heating potassiumtrioxochlorate(V)

- 37. Which of the following is used in the manufacture of glass?
 - A. Sodium chlorine
 - B. Sodium trioxocarbonate(IV)
 - C. Sodium tetraoxosulphate (VI)
 - D. Sodium trioxonirate(V)
- 38. Aluminium is extracted commercially from its ore by
 - A. heating aluminium oxide with coke in a furnace
 - B. the electrolysis of fused aluminium oxide in cryolite
 - C. treating cryolite with sodium hydroxide solution under pressure
 - D. heating sodium aluminium silicate to a high temperature.
- 39. Given the reactions

(i)
$$Fe_{(s)} + (NO3)_{2(aq)} \rightarrow Fe(NO_3)_{2(aq)} + X_{(s)}$$

- (ii) $H2_{(g)} + XO_{(s)} \longrightarrow X_{(s)} + H_2O_{(g)}$, X is likely to be.
- A. copper B. z
- C. calcium D. lead.
- 40. Crude copper can be purified by the electrolysis of CuSO4_(ao) if
 - A. platinum electrodes are used
 - B. the crude copper is made the anode of the cell
 - C. the crude copper is made the cathode of the cell
 - D. crude copper electrodes areused.

- A. 2 methylbutanoic acid
- B. 2 methyl -hydrosyketone
- C. 2 methyl - hydroxyl baldheaded
- D. 2 methylpentanoicacid
- 43. Alkanoates are formed by the reaction of alkanoic acids with
 - A. alkyl halides
- B. alkanols

sodium

D.

- C. ethers

44. The acidic hydrogen in the compound

1 2 3 4 5 H—C= C—CH=CH—CH₃ is the hydrogen attached to carbon number

- A. 5 B. 4 C. 3 D. 2
- 45. The four classes of hydrocarbons are
 - A. ethane, ethene ethyne and benzene
 - B. alkanes, alkenesm alkynes and aromatics
 - C. alkanes, alkenes, alkynes and benzene
 - D. methane, ethane, propane and butane
- 46. Alkanes 400-700°C smaller + alkanes +hydrogen. The

above reaction is known as

- A. Photolysis B. Cracking
- C. Isomerization D. Reforming.

C. an oxidizing agent

D. a catalyst.

48. 48. which of the following compounds has the highest boiling point?

A. CH,CH,CH,CH,OH

B. CH₃CH₂CH₂CHO

C. CH₃ CH₂ CH₂ CH₃

D. CH₃CH₂OCH₂CH₂

49. Detergents have the general formula

A. R(CH₂)NOH

B. RSO₃ Na+

C. RCO₂Na+

D. RCO₂H

50. What process would coal undergo to give coal gas, coal tar, ammoniac liquor and coke?

A. steam distillation

B. Destructive distillation

C. Liquefaction,

D. Hydrolysis.

Chemistry 1989

8.

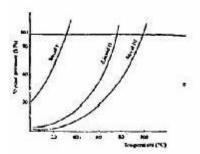
1. Which of the following would support the conclusion that a solid sample ismixture?

A. The solid can be ground to a fine powder

B. The density of the solid is 2.25 g dm^3

C. The solid has a melting range of 300°C to 375°C.

D. The solid of the moisture from the atmosphere.


2. The molar of carbon to hydrogen of volatile liquid compound is 1:2. 0.12 g of the liquid evaporation at s.t.p gave 32 cm3 of vapour. The molecular formula of the liquids is

A. C₃H₆C C_H

B. C₄₈ D. C₄₈ D.

[G.M.V = 22.4 DM3, C=12, H=1]

3.

It can be deduced from the vapour of pressure curves above that.

A. liquid has the highest boiling point

B. liquid has the highest boiling point

C. liquid lll has the highest boiling point

D. liquid Ill has the lowest boiling point.

4. 20.00 cm3 of a solution containing 0.53 g of anhydrous Na₂CO₃ in 100 cm3 requires 25.00 cm3 of H₂SO₄for complete neutralization. The concentration of the acid solution in moles per dm3 is

A. 0.02 C 0.06 B 0.04 D. 0.08

[H=1, C=12, 0=16, Na=23, S=32]

5. The minimum volume of oxygen required for the complete combustion of mixture of 10cm3 of CO and 15 cm3 of H, is

A. 25.0 cm³ B 12.5 cm³ C 10.0 cm³

C 10.0 cm D 5.0 cm³

6. What is the partial pressure of hydrogen gas collected over water at standard atmospheric pressure and 25oC if the saturation vapour pressure of water is 23 mm Hg at that temperature?.

A. 737 mm Hg

B. 763 mmHg

C. 777 mm Hg

D. 737 mmHg

7. The atomic radius Li, Na and K are 1:33 Am 1.54A and 1.96A respectively. Which of the following explain this gradation in atomic radius?

A. Electropositivity decreases from Li to Na to K

B. Electronegativity decreases from Li to Na to K.

C. The number of electron shells increase from Li to Ma to K

D. The elements are in the same period.

Which of the curves in the above graph illustrates the behaviors of an ideal gas?

A. W C. Y B. XD. Z

9.	Elements X and Y have electronic configurations
	$1s^22s^22p^4$ and $1s^22s^22p^63s^23p^1$ respectively. When they
	combine, the formula of the compound formed is

XY A.

B. YX

C. X_2Y_3 D. Y_2X_3

The atomic number of cesium is 55 and its atomic mass 10. is 133. The nucleus of cesium atom therefore contains

78 protons and 55 electrons A.

B. 55 protons and 78 neutrons

55 neutrons and 78 electrons C.

D. 78 neutron and 55 neutrons

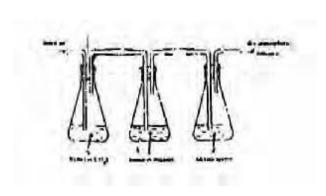
Four elements P,Q,R and S have atomic numbers of 4, 11. 10, 12, and 14 respectively. Which of these elements is a noble gas?

P A.

B. Q

C. R D. S

12. How many valence electrons are contained in the element represented by ³¹ P?


> 3 A.

B.

C. 15

5 31 D.

13.

In the above set up, substances X and Y are respectively.

A. Lime water and copper (ll)tetraoxosulphate (VI)

В. Potassium trioxocarbonate(IV) and alkaline prygallol

C. Potassium hydroxide and alkaline pyrogallo

D. Potassium trioxocarbonate (IV) and concerntrate tetraoxosulphate (VI) aid

The gaseous pollutant sulphur (IV) oxide is most likely 14. to be detected in fairly reasonable quantities in the area around a plant for the

extraction of aluminium from bauxite A.

B. production of margarine

C. smelting of copper

D. production of chlorine from brine

Calcium hydroxide is added in the treatment of town 15. water supply to

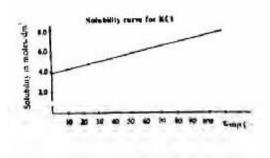
> kill bacteria in the water A.

B. facilitate coagulation of organicparticles

C. facilitate sedimentation

improve the tase of thewater. D.

A hydrated salt of formula MSO₄.XH₂O contains 45.3% 16. by mass of thewater of crystallization.


Calculate the value of X.

3 A. 7 C.

17

D. 10

$$[M = 56, S = 32, O = 16, H = 1]$$

If the graph above 1 dm³ of a saturated solution of HCI is cooled from 80°C, the mass of crystals deposited will be.

A.

7.45 g C. 74.50 g 14.90 g

18. Using 50cm3 of 1 M potassium hydroxide and 100cm3 of 1M tetraoxosulphate(VI) acid, calculate the respective volumes in cm3 of bade and acid 100 cm3 of base and acid that would be required to produce the maximum amount of potassium tetraoxosulphate(VI)

> A. 50,50 C. 50,25

25,50 D. 25,25

$$[K = 39, S = 32, O = 16, H = 1]$$

A solution of calcium bromide contains 20 g dm³ 19. What is the molarity of the solution with respect to calcium bromide and bromide ions?

> A. 0.1.0.1 C. 0.1,0.05

B. 0.1,0.2 D. 0.05,0.1

$$[Ca = 40, Br = 80]$$

The substance of ZnO dissolves in sodium hydroxide 20. solution and mineral acid solution to gives soluble products in each case. ZnO is therefore referred to as.

> an allotropic acid A.

an atmophericoxide B.

C. a peroxide

D. a dioxide.

21. An acid its conjugate base.

> A. can neutralize each other toform a salt

B. differ only by a proton

differ only by the opposite charges they carry C.

are always neutral substances D.

22. The same current is passed for the same time through solutions of AgNO3 and CuSO4 connected in series. How much silver will be deposited if 1.0 g of copper is produced?

> A. $1.7\,\mathrm{g}$

B. $3.4\,\mathrm{g}$

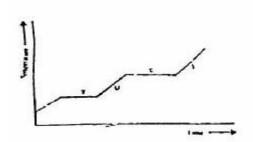
 $6.8\,\mathrm{g}$

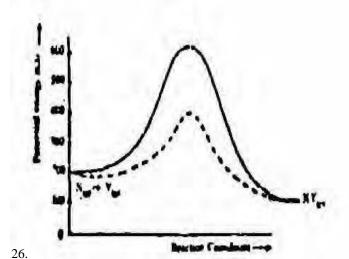
D. 13. 6 g

[Cu = 63.5, S = 32, O = 16M Ag = 108, N = 14]

- 23. What is discharged at the cathode during the electrolysis of copper (11) tetraoxosulphate (VI) solution?
 - Cu²⁺ only A.
- B. H+ only
- C. Cu, and H⁺

-2


- Cu²⁺ and SO²⁻ D.
- 24. An element, Z forms an anion whose formula is $[Z(CN)]^{y}$. If has an oxidation number of +2, what is the value of y?
 - A. C.
- B. D. -5
- 25. Which of the reaction is NOT an example of a redox reaction?


$$\begin{array}{ccc} \text{I Fe} + 2\text{Ag}^+ &\longrightarrow & \text{Fe}^{2+} + 2\text{Ag} + \\ \text{II 2H}_2\text{S} + \text{SO}_2 &\longrightarrow & 2\text{H}_2\text{O} + & 3\text{S} \\ \text{III N}_2 + \text{O}_2 &\longrightarrow & 2\text{NO} \\ \text{IV CaCO}_3 &\longleftarrow & \text{CaO} + \text{CO}_2 \end{array}$$

- A. I, II, III C. III and IV
- B. II and III
- D. IV only.

- and -396 kJ respectively. Calculate the molar heat of formation of ethane in kJ.
- -2792 A.
- B. +2792
- C. -64
- D. +64
- $CO(g) + H_2O CO_2(g) + H_2(g) H = -41000 J. Which$ 28. of the following factors favour the formation of hydrogen in the above reaction? I high pressure II low pressure III high temperature IV use of excess steam
 - I. III. and IV A.
- B. III only
- C. II, III and I
- D. Iv only.

29.

The above graph shows a typical heating curve from the solid phase through the liquid phase to the gaseous phase of a substance. What part of the curve shows solid and liquid in equilibrium?

- A. Τ
- B. U
- C. X
- Y D.

30. Which of the following represents the balanced equation for the reaction of copper with concentrated

- trioxonirate (V)acid? A. $2NHO \xrightarrow{3(aq)} Cu(NO_3) + H_{2(g)}$ B. $Cu_{(s)} + 4HNO_3 \rightarrow Cu(NO_3)_{2(aq)} + 2H_2O_{(l)} + H_{2(g)}$
- $\begin{array}{l} 2NO_{_{2(g)}} \\ 3Cu_{_{(s)}} + 8HNO_{_{3(aq)}} \longrightarrow 3Cu(NO_{_{3}})_{_{2(aq)}} + 4H_{_{2}}O_{_{(l)}} \end{array}$ C.
- + $2NO_{(g)}$ $3Cu_{(s)} + 4 \text{ HNO}_{3(aq)} \rightarrow 3Cu(NO_3)_{2(aq)} + 2H_2O_{(l)} +$ D.
- manufacture of tetraoxosulphate(VI) acid is A. Manganese (IV) oxide

31.

- - B. Manganese (ll) tetraoxosulphate (lV)

The catalyst used in the contact process for the

- C. Vanadium (V)oxide
- D. Iron metal
- 32. Some products of destructive distillation of coal are
 - carbon (iV) oxide and ethanoic acid A.
 - B. trioxocarbonate (IV) acid and methanoic acid
 - C. producer gas and water gas
 - D. coke and ammonialiquor

27. The combustion of ethene, C2H2, is given by the equation $C_2H_4 \rightarrow 2CO_2 + 2H_2O$; H=-1428 kJ. If the molar heats of formation of water and carbon (1) oxide are –286kJ

of the catalyzed uncatalysed reactions of

 $X(g) + Y(g) \rightarrow$

A.

C.

uncatalysed reverse reactions.

 $XY(g) + X(g) \longrightarrow X(g) + Y(g)$

300,500

-300, -500

The above diagram gives the potential energy profile

activation energies in kJ of the catalyzed and

XY(g). Deduce the respective

В.

D.

500,300

-5000.

- 33. Gunpowder is made from charcoal, sulphur and potassium trioxonirate (V). The salt in the mixture performs the function of
 - A. an oxidant
- В. a reductant
- C. a solvent
- D. a catalyst

35. Bleaching powder, CaOCl2.H2O, deteriorates on exposure to air because

- A. it loses its water of crystallization
- B. atmospheric nitrogen displaces chlorine from it

D.

lll andlV

- C. carbon (IV) oxide of the atmosphere displaces chlorine fromit
- D. bleaching agents should be stored insolution

36. The product of the thermal decomposition of ammonium trioxonirate (V) are.

A. NO₂ and oxygen

I and III

C

- B. NH₃ and oxygen
- C. nitrogen and water
- D. N₂O andwater.

37. The scale of a chemical balance is made of iron plate and coated with copper electrolytically because.

- A. iron is less susceptible to corrosion than copper
- B. copper is less susceptible corrosion as ion
- C. copper is less susceptible to corrosion than ion
- D. copper and ion are equally susceptible to corrosion.

38. A metal is extracted for, its ore by the electrolysis of tits molten chlorine and it displace lead from lead (ll) trioxonirate(V) solution. The metal is

- A. copper
- B. aluminium
- C. zinc
- D. sodium

39. Mortar is NOT used for under-water construction because.

- A. It hardens by loss of water
- B. Its hardening does not depent upon evaporation
- D. It requires concrete to harden
- E. It will be washed away by the flow of water.

40. Which of the following is NOT involved in the extraction of metals from their ores?

- A. reduction with carbon
- B. reduction with other metals
- C. reduction by electrolysis
- D. oxidation with oxidizing agent.

Which of the following compounds is an isomer of the compound.

- A. CH-CH₂-CH-CH₂-CH₃ CH₂
- B. CH-CH₂-CH-CH₂-CH₃ C₂H₅
- C. CH-CH₂-GH-CH₃ C₂H₅
- D. CH₃-CH₁-CH₂-CH₃
 CH₃

42. When excess chlorine is mixed with ethene at room temperature, the product is

- A. 1,2 dichloroethane
- B. 1,2 dichloroethene
- C. 1, 1-dichloroethane
- D. 1, 1-dichloroethene.

43. Vulcanization of rubber is a process by which

- A. Isoprene units are joined to produce rubber
- B. Rubber latex is coagulated
- C. Sulphur is chemically combined in the rubber
- D. Water is removed from therubber.

44. The reaction between ethanoic acid and sodium hydroxide is an example of

- A. esterification
 - B. neutralization
- C. hydrosylation
- D. hydrolysis

45. The bond which joins two ethanoic acid molecules in the liquid state is

- A. a covalent bond
- B. an ionic bond
- C. a dative covalent bond
- D. a hydrogen bond

46. The alkaline hydrolysis of fats and oils produces soap and

- A. propane 1, 1, 3-triol
- B. propane 1, 3, 3-triol
- C. propane-1-2-2-triol
- D. propane-1-2-3-triol

47. which of the following is NOT amonomer?

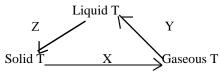
A.

- B. $CH_2 = CH_2$
- D. $CH_2 = CHC1$

48. What is the IUPAC name for the compound

- A. 1-chloro-2-methylprop-2, 3-ene
- B. 1-chloro-2-methlprop-2-ene
- C. 3-chloro-2-methylprop-1-ene
- D. 3-chloro-2-methyprop-1,2-ene

49. The gas responsible for most of the fatal explosion in coal mines is


- A. butane
- B. ethene
- C. ethane
- D. methane

- 50. Three liquids X,Y and Z containing only hydrogen and carbon were burnt on a spoon, X and Y burnt with sooty flames while Z did not. Y is able to discharge the colour of bromine water whereas X and Z cannot. Which of the liquids would be aromatic in nature?
 - A. X and Z
- Y B.
- C. X
- Z D.

Chemistry 1990

 $[G.M.V \text{ at s.t.p} = 22.40 \text{ dm}^3]$

- Which of the following is a physical change? 1.
 - A. The bubbling of chlorine into water
 - B. The bubbling of chlorine into jar containing hydrogen
 - C. The dissolution of sodium chlorine inwater
 - D. The passing of steam over heated iron.
- 2. Changes in the physical states of chemical substances T are shown in the schemebelow.

The letters X, Y and Z respectively represent

- A. sublimation, condensation and freezing
- В. sublimation, vaporization and solidification
- C. freezing, condensation and sublimation
- D. evaporation, liquefaction and sublimation.
- 3. In the reaction: $SnO_2 + 2C - Sn + 2CO$ the mass of coke containing 80% carbon required to reduce 0.032 kg of pure tin oxide is
 - A. 0.40 kgC.
- B. 0.20 kg
- D. 0.06kg 0.40g

[Sn = 119, O = 16, C = 12]

- The Avogadro's number of 24 of magnesium is same as 4. that of
 - 1 g of hydrogen molecules A.
 - B. 16 g of oxygenmolecules
 - C. 32 g of oxygenmolecules
 - 35.5 of chlorinemolecules.
- If a gas occupies a container of volume 146 cm3 at 18°C 5. and 0.971 atm, its volume on cm3 at s.t.p is
 - A. 133
- B. 146
- C. 266
- 292 D.
- The volume occupied by 1.58 g of gas s.t.p is 500 cm³. 6. What is the relative molecule mass of thegas?
 - A. 28

B.

C. 344

32 D. 71

- 7. Equal volumes of CO, SO, NO, and H,S, were released into a room at the same point and time. Which of the following gives the order of the room?
 - CO2, SO2, NO, H2S, A.
 - B. SO,, NO,, H,S, CO
 - C. CO, H₂S, SO₂,NO₂
 - CO, H₂S, NO₂, SO₂ D.

[S = 32, C = 12, 0 = 16, N = 14, H = 1]

- 8. A basic postulate of the kinetic theory of gases is that the molecules of a gas move in straight lines between collisions. This implies that.
 - A. collisions are perfectly elastics
 - forces of repulsion exist B.
 - C. forces of repulsion and attraction are in equilibrium
 - D. collisions are inelastic.

		P	Q	R	S
9.	Proton	13	16	17	19
	Electron	13	16	17	19
	Neutron	14	16	35	20

Which of the four atoms P,Q,R and S in the above data can be described by the following properties: relative atomic mass is greater than 30 but less than 40; it has an odd atomic number and forms a unipositive ion in solution?

- P A. C. R
- Q В. S D.
- Which of the following terms indicates the number of 10. bonds that can be formed by atom?
 - A. Oxidation number
 - B. Valence
 - C. Atomic number
 - D. Electronegativity.
- $\sum_{(g)} X_{(g)}$. The type of energy involved in the 11. above transformation is
 - A. ionization energy
 - B. sublimation energy
 - C. lattice energy
 - electron affinity D.

12.	35 and	37, has an aton	nic of 35.5.	ope of mass numbers The relative abundance	20.		concentration of on of pH4.398?			
		isotope of mass				A.	4.0×10^{-5}	B.	0.4 x	10 ⁻⁵
	A. C.	20 50	B. D.	25 75		C.	4.0×10^{-3}	D.	0.4 x	10 ⁻³
10	1001	3 6		T	21.		volume of 11.0 M		ric acid n	nust be dilute
13.				an Impurity was passed			ain $1 dm^3 of 0.05$	M acid?	_	3
				until all the H2S had		A.	0.05 dm^3		В.	0.10 dm^3
				as found weight 5.02 $(NO_3)_2 + H2O$ '! PbS		C.	0.55 dm^3		D.	$11.0\mathrm{dm}^3$
				volume of hydrogen		70.40				
		des in the air is		volume of mydrogen	22.		8 g of silver is d			
	A.	50.2	В.	47.0			cted in series v		per cou	lometer, the
	C.	4.70	D.	0.47			ne of oxygen liber 0.56dm ³	rateais	D	$5.50\mathrm{dm}^3$
		[Pb = 207,	S = 23, GM	IV at s.t.p = 22.4 dm_3]		A. C.	0.36dili 11.20dm ³		B. D.	22.40
				1 3-		C.	dm ³		D.	22.4 0
14.	table.	After 8 hours, t	heresulting	5.0 g was placed on a g pink sold was found				u = 64, GM	IV at s.t.	$p = 22.40 \text{ dm}^3$].
				that substance T	23.	0.1 fa	raday of electric	ity deposi	ted 2.95	g of nickel
	A.	is deliquesco			-0.		g electrolysis is			
	B.	is hydroscop					mber of moles of			
	C.			ater of crystallization		0.4 fa				1
	D.	is effloresce	nt			A.	0.20		B.	0.30
15	Tri	CCI				C.	0.034		D.	5.87
15.	electro	olysis of conce	entrated br	plant used ins the ine, with a flowing		[Ni =	58.7]			
	A.	ry cathode may	contain iiii	ourities like.	24.	Cr2O	$e^{2} + 6Fe^{2} + 14H^{2}$	\rightarrow 2Cr ³⁺	$+6Fe^{3+}$	+7HO. In the
	В.	oxygen hydrogen					chromium chang	ge from.	_	
	C.	mercury (11)c	hloride			A.	+7 to +3		B.	+6 to +3
	D.	hydrogen ch				C.	+5 to +3		D.	-2 to+3
		,			25.	In the	reaction $10^{-} + 5$	$1^{-} + 6H^{+}$	31	$+3H_{2}^{O}$, the
16.	The solubility in moles per dm ³ of 20 g of CuSO dissolved in 100 g of water at 180°C is						zing agent is 3			2
						A.	H^{+}	B.	1-	
	A.	0.13	B.	0.25		C.	10 ⁻ ₃	D.	12	
	C.	1.25	D.	2.00 63.5, S = 32, O = 16]	26	E ₂ O	+2.41 41.6) + 2Ea - ar	ma 1670	IrI mal 1 and
			[Cu –	03.3, S = 32, O = 10	26.	2 3($_{(s)}^{+2Al} \rightarrow _{2}^{Al}$	3 (s)	re –1670	KJ IIIOI-1 and
17.	Cmoles	e consists of					J mol-1 respective	vely, the e	nthalpy c	hange in kJ
17.	A.	solid particle	ne dienoreod	Linliquid			e reason is		D	. 0.40
	В.			dispersed in gas		A. C.	+2492 -848		B. D.	+848 2492
	C.			ispersed in liquid		C.	-040		D.	2492
	D.	liquid partic			27.	Iron o	alvanized with z	inc catholi	cally pro	tected from
18.			-	aCl. Given a solution	21.	corros	sion. This is beca	use		
10.				0 g of water at room		_	inc has a more po	ositive oxic	iation po	tentiai than
				um volume of 0.1 M			inc has a less pos	itive oxida	ition pote	ential than
	calciur	n oxalate requi	red to produ	ce maximum calcium			on	20110	on pou	
	oxalate	e using the abo					oth have the sam	eoxidation	potentia	1
	A.	$1.40 \times 10^2 dn$					inc is harder than		1	
	B.	$1.40 \times 10^{2} \text{ cm}$								
	C.	$1.40 \times 10^{-2} dr$			28.		h of the following			t faster with
	D.	$1.40 \times 10^{-2} \text{cr}$	n	3		dilute A.	dtrioxonitrate (V 5 g of lumps of) acid? of CaCO a	t25°C	
19.	2.0 g c	of monobasic ac	cid was mad	le up to 250 cm with		B.		3	0	
	dist₃ille cm of	dist ₃ illed water. 25.00 cm ³ of this solution required 20.00 cm of 0.1 M NaOHsolution for completeneutralization.					3 g of powers	3	0	
	The m	olar mass of th	e acid is				5 g of powere	d CaCO ₃ at	t 50C	
	A.	200 g	В.	160 g	29.	In the	reaction,			
	C.	100 g	D.	50 g	-		$\rightarrow H_{2(g)} + I_{2}(g), \chi$	Δ H = 101	кJ;	
							encentration of io			ium mixture
							e increased by		•	
						A.	raising the pre	essure		

	C. D.	adding the to lowering the	_	;					
30.		h of the following displacement		n be coll	ected by				
	A.	NO		B.	H_2				
	C.	NH_3		D.	Cl_2				
31.	The b	rown fumes giv	en off whe	n trioxon	irate(V) acid				
	A. C.	NO_2 and O_2 NO_2 , O_2 and	B. H ₂ O D.	H ₂ O NO ₂	and NO ₂ and H ₂ O				
32.	any o	h of the followine of sulphur (I' and nitrogen (I	V) oxide, h l) oxixde?	ydrogen,	carbon (IV)				
	A. pass each gas into water and test with blue litmus pare								
	В. С.	B. pass each gas into limewater							
	D.	passs each	-	_	oncentrated				
	D.	tetraoxosulp	U		nechirated				
33.		Haber process talyst commonl							
	A.	vanadium	•	B.	platinum				
	C.	iron		D.	copper				
34.		allic oxide whice e salt and water an acidic oxi an atmosphe	only can bide						
	C.	a neutral oxi							
	D.	an atmosphe							
35.	Which of the following metals will liberate hydrogen form steam or diluteacid?								
	A.	copper	В.	iron					
	C.	lead	D.	merc	ury				
36.	Coal f	ire should not b	e used in po	oorly vent	tilated rooms				
	A. of theaccumulation of CO ₂ which cause deep sleep								
	B.	it is usually	too hot						
	C.	of the accum	of the accumulation of CO which causes						
	D.	it removes n	nost of the	gases in t	he room				
37.	The n	najor componen	t of the sla	g from th	e production				
	A. B.	an alloy of ca	alcium and	iron					
	в. С.	coke impure ion							
	E.	calcium triox	xosilicate(V						
38.		m hydroxide sh		ored in pr	operlyclosed				
		iners because it		opour f.	m the ein				
	Α.	readily abso	ios water v	apour ire	m uie air				

is easily oxidized by atmospheric oxygen

Melts at a low temperature.

turns golden yellow when exposed to light.

B.

B.

C.

D.

raising the temperature

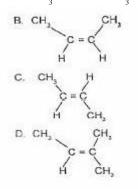
To make coloured glasses, small quantities of oxides of metals which form coloured silicates are often added to the reaction mixture consisting of Na₂CO₃ and SO₂. Such a metal is

A. potassium

B. barium

A. potassium B. barium C. zinc D. copper

Which of the following compounds gives a yellow residue when heated and also reacts with aqueous sodium hydroxide to give a white gelatinous precipitate soluble in excess sodium hydroxide solution.


41. A cycloalkane with molecular formula C H_{510} has

A. one isomerB. two isomersC. three isomersD. four isomers

42. The structure of cis-2butene is A. CH₂-CH=CH-CH₂

39.

40.

43. What is the IUPAC name for the hydrocarbon

$$CH_{3} - C = CH - CH - CH_{3}$$

$$CH_{2} - CH_{2}$$

CH₂

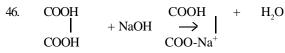
A. 2-ethyl-4-methylpent-2-ene

B. 3,5-dimenthylhex-3-ene

C. 2,4-dimenthylhex-3-ene

D. 2-methyl-4-ethylpent-3-ene

44. $CH_3 \equiv CH \rightarrow P$. Compound P, in the above reaction, is.


A.
$$CH - C = CH NH_{2}$$

$$NH_{2}$$
B.
$$CH_{3} - C \xrightarrow{CH} Na$$
C.
$$CH_{3} - C \xrightarrow{C} - Na$$
D.
$$CH_{3} - C \xrightarrow{C} - NH_{2}$$

45.

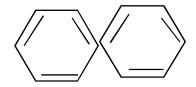
The label on a reagent bottle containing a clear organic liquid dropped off. The liquid was neutral to litmus and gave a colourless gas with metallic sodium. The liquid must be an

A. alkanoate B. alkene C. alkanol D. alkane

The above reaction is an example of

- displacement reaction
 - B. a neutralization reaction C. an elimination reaction
 - D. Saponification
- 47. Alkanoic acids have low volatility compared with Alkanoic because they
 - are morepolar than alkanols A.
 - В have two oxygen atoms while alkanols have
 - C. form two hydrogen bonds while alkanols donot
 - D. form two hydrogen bonds while alkanols form one.
- The octane number of a fuel whose performance is the 48. same as that of a mixture of 55 g of 2, 2, 4-trimethyl pentane and 45 g of n-heptanes is
 - 45 A.
- 55 100 C. 80 D.
- 49. Which of the following is formed when maltose reacts with concentrated tetraoxosulphate (VI) acid.
 - Carbon (IV) oxixde A.
 - B. Coaltar
 - C. Charcoal
 - D. **Toxicfumes**

50. Which of the following compounds represents the polymerization product of ethyne?


Α..

В.

C.

D.

Chemistry 1991

- 1. Which of the following can be obtained by fraction of distillation?
 - Nitrogen from liquidair A.
 - B. Sodium chloride for seawater
 - C. Iodine from a solution of iodine in carbon tetrachloride
 - D. Sulphur from a solution of sulphur in carbon disulphide.
- 2. Which of the following aremixture? I Petroleumii Rubber latex. Iii Vulcanizes' solution. Iv Carbon (11) sulphides
 - I, ii and iii A.
 - B. I, ii and iv
 - C. I and iionly
 - D. I and iv
- Anironoreisknowntocontain 70.0% Feo. The mass 3.

of iron metal which can theorically be obtained from 80kg of the ore is.

- 35.0kg A.
- B.
- 39.2 kg
- C. 70.0kg
- D. 78.4 kg
- [Fe = 356, O = 16]

- 4. In two separate experiments 0.36 g and 0.71 g of chlorine combine with a metal X to give Y and Z respectively. An analysis showed that Y and Z contain 0.20 g and 0.40 g of X respectively. The data above represents the law of.
 - A. multiple proportion
 - B. conversation of mass
 - C. constant composition
 - D. reciprocal proportion.
- 5. 30cm³ of oxygen at 10 atmosphere pressure is placed in a 20 dm³ container. Calculate the new pressure it temperature is kept constant.
 - A. 6.7 atm
- B. 15.0atm
- C. 6.0 atm
- D. 66.0atm
- 6. A given quantity of gas occupies a volume of 228cm at a pressure of 750 mm Hg. What will be its volume at atmospheric pressure?
 - A. 200cm³
- 225 cm^3 B.
- C. 230 cm^{3}
- D. 235 cm^3

7.	Calculate the volume of carbon (lv) oxide measure at s.t.p, produced when 1 kg of potassium hydrogen trioxocarbonate (iV) is totally decomposed by heat. A. 28 dm ³ B. 56 dm ³ C. 112 dm ³ D. 196 dm ³ [G.M.Vat s.t.p = 22.4 dm ³ , K = 39, O = 16, C = 12, H = 1]	15.	All curvisions
8.	A sample of a gas exerts a pressure of 8.2 atm when confined in a 2.93dm³ container at 20°C. The number of moles of gas in the sampleis A. 1.00 B. 2.00 C. 3.00 D. 4.00 [R= 0.082 litre atm/deg mole]		
9.	Atoms of element X (with 2 electrons in the outer shell) combine with atoms of Y(with 7 electrons in the outer shell). Which of the following is FALSE? The compound formed A. has formula XY B. is likely to be ionic C. contains X ²⁺ ions D. contains Y ions		The electrons of two atoms of Y and Z are arranged in shells as shown above. The bond formed between the atoms of Y and Z is A. ionic B. covalent C. dative D. metallic.
10		16.	Which of the following ionsis a pollutant in drinking water even in trace amount?
10.	The ions X and Y are isoelectronic, each containing a total of 10 electrons. How many proteins are in the		A. Ca ²⁺

The electronic configuration of an element is 1s²2s²2p⁶ 11. 3s² 3p³. How many unpaired electron are there in the element.

nuclei of the neutral atoms of X and Y respectively?

D.

B.

9 and 11

9 and 9

5 В. 4 A. C. 3 2 D.

10 and 10

11 and 9

12. Which of the following represents the type of bonding present in ammonium chloride molecule?

> A. Ionic only

A.

C.

B. Covalent only

C. Ionic and dative covalent

D. Dative covalent only.

13. Which of the following is arranged in order of increasing electronegativity?

A. Chlorine, aluminium, magnesium, phosphorus, sodium.

B. Sodium, magnesium, aluminium phosphorus, chlorine

C. Chlorine, phosphorus, aluminium, magnesium,

D. Sodium, chlorine, phosphorus, magnesium, aluminium.

A quantity of air was passed through a weighed mount 14. of alkaline pyrogallol. An increase in the weight of the pyrogallol would result from the absorption of.

> nitrogen A.

B. neon

C. argon D. oxygen. B.

 Hg^{2+} Mg^{2-} C.

D.

17. The solubility of copper (ll) tetraoxosulphate (Vl) is 75 g in 100 g of water at 100°C and 25 g in 100 g of water at 30oC. What mass of the salt would crystallize, if 50 g of copper (ll) tetraoxosulphate (VI) solution saturated at 100°C were cooled to 30°C?

> A. 57.5 g 42.9 g C. 28. 6g D. 14.3 g

18. A sample of temporary hard water can be prepared in the laboratory by.

A. dissolving calcium chloride in distilled water

B. saturating lime water with carbon(IV) oxide

C. saturating distilled water with calcium hydroxide

D. dissolving sodium hydrogen trioxocarbonate (IV) in some distilled water.

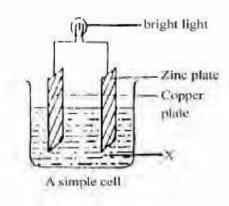
19. A property of a colloidal dispersion which a solution does not have is .

the Tyndall effect A.

B. homogeneity

C. osmotic pressure

D. surface polarity.


20. 50 cm3 of sulphur (IV) oxide, 800cm3 of ammonia, 450 cm3 of hydrogen chloride, 1.0 cm3 of water at 15oC. Which of the following is suitable for demonstrating the fountain experiment?

> A. Sulphur (IV) oxide and hydrogen chloride

B. Carbon (IV) oxide and ammonia

C. Ammonia and hydrogen chloride

D. Carbon (IV) oxide and sulphur (1V) oxide 21.

Which of the following substances could be satisfactorily used as X in the above figure?

- Ammonia and Potassiumhydroxide A.
- B. Potassium hydroxide and sodiumchloride
- C. Ammonia and ethanoicacid
- D. Ethanoic and sodiumchloride
- 22. What volume of CO₂ at s.t.p would be obtained by reacting 10cm³ of 0.1 M solution of anhydrous sodium trioxocarbonate (IV) with excess acid?

A. 2.240 cm₂ C. 224.0 cm₃

22.40 cm₃

D. 2240 cm₃

 $[G.M.V at s.t.p = 22.4 dm_3]$

23. If a current of 1.5 A is passed for 4.00 hours through a molten tin salt and 13.3 g of tins is deposited, What is the oxidation state of the metal in thesalt?

> A. 1 C. 3

B. D.

 $[Sn = 118.7, F = 96500 \text{ C mol}^{-1}]$

- 24. Which of the following equivocal solutions, Na₂CO₃, Na₂SO₄, FeCl₃, NH₄Cl and CH₃ COONa, have pH greater than?
 - A. FeCl₃ and NH₄Cl
 - B. Na₂CO₃CH₃COONa and Na₂SO₄,
 - C. Na₂CO₃ and CH₃COONa
 - D. FeCl₃, CH₃ COONa.NH₄Cl
- 25. $MnO_4^- + 8H^+ + ne \rightarrow M^{++} + 4H_2O$. Which is the value of n the reaction above?

A.

3

C.

2

D. 5

- $2H_{2(g)} + SO_{2(g)} \longrightarrow 3S_{(s)} + 2H_2O_{(1)}$. The above reaction is A. a redox reaction in which H_2S is the oxidant and 26. SO, is the reductant.
 - B. a redox reaction in which SO₂ is the oxidant and H_2S is the reductant.
 - C. Not a redox reaction because there is no oxidant in the reaction equation
 - Not a redox reaction because there is no reductant in the reaction equation.
- 27. Manganese(IV) oxide is known to hasten the decomposition of hydrogen peroxide. Its main actions is to.
 - A. increase the surface area of the reactants
 - increase the concentration of the reactants B.

- C. lower the activation energy for the reaction
- D. lower the heat of reaction, H, for the reaction,
- 28. 1.1 g of CaCl dissolved in 50 cm³ of water caused a rise in temperature of 34°C. The heat reaction, H for CaCl in kJ per moles is

A. -71.1 B. -4.18

C. +17.1

+111.0D.

 $[Ca = 40, Cl = 35.5, specific heat of water is 4.18 KJ^{-1}]$

29. NO + CO
$$\rightleftharpoons 1/2 \text{ N}_2 + \text{ CO}_2$$
 $\checkmark \text{H} = -89.3 \text{kJ}$

.What conditions would favour maximum conversion of nitrogen (ll) oxide and carbon(ll) oxide in the reaction above?

- A. low temperature and high pressure
- B. high temperature and low pressure
- C. high temperature and high pressure
- D. low temperature and lowpressure.
- 30. Which of the following equilibria is unaffected by a pressure change?

 $2NaCl \longleftrightarrow 2Na + Cl$ A.

 $H_2 + I_2 \iff 2HI$ B.

 $2O_3$ \Longrightarrow $3O_7$ C.

 $2NO_{s} \longrightarrow N_{s}O_{s}$ D.

31.

_	•	
	Initial concentration of no in moles	Initial Rate (moles / sec)
	0.001	3.0 x 10 ⁻⁵
	0.002	1.2 x 10 ⁻⁴

The data in the table above shows the rate of reaction of nitrogen (ll) oxide with chlorine at 25°C. It can be concluded that doubling the intial concentration of NO increase the rate of reaction by factor of

A. two C. four B. three D. five

32. Which of the following gases will rekindle a brightly glowing splint?

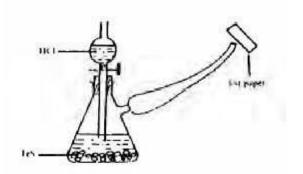
A.

NO,

NO B.

C. N,O D. Cl,

33. Which of the following salts can be melted without decomposition?


> Na₂CO₂ A.

В.

C. MgCO₃

CaCO₃ D. ZnCO₃

- 34. Oxygen gas can be prepared by heating
 - ammonium trioxonirate (V) A.
 - B. ammonium trioxonirate (111)
 - C. potassium trioxonirate (V)
 - D. manganese (IV)oxide.

The appropriate test paper to use in the above experiments moist.

- A. litmus paper
- B. potassium heptaoxodichromate(1V) paper
- C. lead (11)trioxonirate (V) paper.
- D. Universal indicator paper.
- 36. Addition of aqueous ammonia to a solution of Zn⁺⁺ gives a white precipitate which dissolves in an excess of ammonia because.
 - A. zinc isamphoteric
 - B. zinc hydroxide is readily soluble
 - C. zinc forms a complex which is readily soluble in excessammonia
 - D. ammonia solution is a strong base.
- 37. Which of the following, in clear solution, forms a white precipitate when carbon(1V) oxide is bubbled into it for a short time?
 - A. KOH
- B. NaOH
- C. Ca(OH),
- D. $Al(OH)_3$
- 38. Copper (11) tetraoxosulphate (V1) is widely used as a
 - A. Fertilizer
- B. Fungicide
- C. Disinfectant
- D. Purifier
- 39. Which of the following metals can be prepared in samples by the thermal decomposition to their trioxonirate (V)salt?
 - A. Copper and mercury
 - B. Silver and copper
 - C. Mercury and silver
 - D. Magnesium and mercury
- 40. Which of the following compounds can exist as geometric isomers?
 - A. 2-methylbut2-ene
 - B. But-2-ene
 - C. But-1-ene
 - D.

- 41. How many structural isomers can be written for the alkyl bromide C₂H₉Br?
 - A. 3 C. 6
- B. 4 D. 8

- 42. The final products of the presence of ultraviolet light are hydrogen chloride and
 - A. chloromethane
 - B. tetrachloromethane
 - C. trichloromethane
 - D. dichloromethane
- 43. How many grams of bromine will be required to completely react with 10 g of propyne?
 - A. 20 g
- B. 40 g
- C. 60 g
- D. 80 g

[C = 12, H = 1, Br = 80].

- 44. Ethene when passed into concentrated H₂SO⁴is rapidly absorbed. The product is diluted with water and then warmed to produce.
 - A. ethanol
- B. diethyl ether
- C. ethanal
- D. diethyl sulphate.
- 45. One of the advantages of detergents over soap is that detergents.
 - A. are easier to manufacture
 - B. foam more than soap
 - C. form soluble salts with hard water
 - D. are able to deter germ more than soap.
- 46. $CH_3CH_2CHCH_3 = CHCH_3CH_3CH = CHCH_3$

X CHCH + CH CH CH = CH

The above reaction is an example of

- A. dehydration
- B. dehydrohalogenation
- C. neutralization
- D. a fission reaction
- 47. A certain liquid has a high boiling point. It is viscous, non-toxic, miscible with water to be hygroscopic. This liquid is most likely to be.
 - A. CH₃CH₂CH₂CH₂OH
 - B. CH,CH,OHCH,
 - C. CH₃CH₂CHOHCH₃
 - E. CH₃OHCHOCH, OH
- 48. The compound.

CH₃-CH-CH3

- Is known as
- A. 1-chloro-2-methylbutane
- B. 1-chloro-2-methylpronane
- C. 2-chloromethylethane
- D. 1-chloro-2,2-dimethylethane
- 49. Which of the following statements is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide?
 - A. 3 moles of NaOH are required for each mole of glyceride
 - B. 3 moles of glycerol are produced
 - C. only one mole of soap is formed.
 - D. Concentrated H₂SO is essential for the completion of the reaction.

50. Which of the following are the products of the reaction between CH₂COOH and Cl₂ in sunlight? A. CICH, COOH+HCI CH.COC1+HOC1 B. C. CH₃COOCl+HCl D. CH₃COCl+H₂O Chemistry 1992 1. Which of the following substances is not a 9. The nucleus of the isotope tritium, contains homogeneous mixture? A. two neutrons with no protons Filtered sea water B. one neutron and one proton A. B. Soft drink C. two neutron and one electron C. Flood water D. two neutron, one proton, and one electron. D. Writing ink 10. Howmany lone pairs of electron are there on the central 2. There is a large temperature interval between the melting atom of the H₂Omolecules? point and the boiling point of a metalbecause. A.1 B. 2 metals have very high melting points A. C. 3 metals conduct heat very rapidly B. melting does not break the metallic bond but D. 4 C. boiling does. 14 N + X \longrightarrow 17 O + 1 H. In the above reaction, 11. the crystal lattice of metals is easily broken. D. X is a A. neutron, B. Heliumatom Howmanymoles of [H⁺] are there in 1 dm³ of 0.5 solution 3. C. Lithium atom D. Deutrium atom of H₂SO₄ A. 2.0 moles B. 1.0 mole C. 0.5 mole D. $0.25\,\mathrm{mole}$ Four elements P,Q,R and S have 1,2,3 and 7 electrons in their outermost shells respectively. The element which is $wH_2SO_4 + xA(OH)_3 \longrightarrow yH_2O + zAl_2(SO4)_3$. The unlikely to be a metal is 4. respective values of w, x, y and z in the equation above A. P B. Q are C. R D. S A. 2.2.5 and 1 В. 3,2,5 and 2 C. 3,2,6 and 1 D. 2,2,6 and 2 13. The pollutants that are likely to be present in an industrial environment are A given mass of gas occupies 2 dm³ at 300 K. At what 5. H₂S, SO and oxides of nitrogen temperature will its volume be doubled keeping the B. NH₃, HCl and CO pressure constant? C. CO, NH, and H,S A. 400K B. 480 K D. Dust, No and Cl₂ C. 550K D. 600 K 14. Which of the following gases dissolves in water If 100 cm³ of oxygen pass through a porous plug is 50 vapour to produce acid rain during rainfall? 6. seconds, the time taken for the same volume of Oxygen A. hydrogen to pass through the same porous plug is B. Carbon (11) oxide C. A. $10.0 \, s$ B. $12.5 \, s$ Nitrogen C. $17.7 \, s$ 32.0 sSulphur (IV)oxide D. D. [O = 16, H = 1]Water for town supply is chlorinate to make it free 15. 7. Which of the following is a measure of the average from kinetic energy of the molecules of a substance. A. bad odour Volume В. Mass A. B. bacteria C. D. Pressure Temperature C. temporary hardness 8 An increase in temperature causes an increase in the D. permanent hardness. pressure of a gas in a fixed volume due to an increase in the 16. On which of the following is the solubility of a number of molecules of the gas gaseous substance dependant? 1. Nature of solvent. A. B. density of the gas molecules 11. Nature of solute 11. Temperature. 1V.Pressure. C number of collisions between the gas 1, 11, 111 and 1V B. l and ll only A. number of collision between the gasmolecules C. 1, 111 and iV only

llonly

D.

D.

and the walls of the container.

17.			An emulsion p	aint cons	ist of	26.	In whic	ch of the following is the entropy change		
		A.			ispersed in liquid	positiv				
		B.	liquid particle	s disperse	ed inliquid	-	A.	$H_2Q_0 \longrightarrow H_2O(g)$		
		C.	solid particles	dispersed	l in liquid		В.	$Cu^{2+(1)}$ $+ Fe$ \rightarrow $Fe^{2+(aq)} + Cu$		
		D.	solid particles	dispersed	l in solid		C.	$\begin{array}{c} H \underset{\text{Cu}^{2+(i)}}{\longrightarrow} H_2O(g) \\ \text{Cu}^{2+(i)} + Fe \underset{\text{(s)}}{\longrightarrow} Fe^{2+(aq)} + Cu \\ N_{2(g)} + 3H_{2(g)} \xrightarrow{\text{(s)}} 2NH_{3(g)} \end{array}$		
			_	_			D.	$2HCl_{(s)} \rightarrow N_{2(g)} + Cl_{2(g)}$		
18.		A sam	ple of orange jui	ce is foun	d to have a pHof					
					of the hydroxide ion	27.	In wh	nat way is equilibrium constant for the forward		
		in the j	uice?				reaction related to that that of the reverse reaction?			
		A.	1.6×10^{-4}	B.	6.3×10^{-11}		A.	The addition of the two is expected to be		
		C.	6.3×10^{-4}	D.	1.6×10^{-11}			one		
							B.	The product of the two is expected to be		
19.		Arrang	ge HCl, CH ₃ COC	H, C ₆ H ₅ C	H₃in order of			one		
			sing conductivity.		J		C.	The two equilibrium constants are identical		
		A.	HCl,CH3COOl	H,C _e H _e CH			D.	The product of the two is always greater		
		B.	C ₆ H ₅ CH ₃ HCl ₇					than one.		
		C.	C ₆ H ₅ CH ₃ COO							
		D.	CH ₃ , COOH,C	H ₂ CH ₃ ,H0	Cl	28.	Whic	h of the following equilibra shows little or no		
			,	, , ,			net re	eaction when the volume of the volume of the		
20.		Which	of these is an ac	id salt?			syste	m is decreased?		
		A.	$K_2SO_4A_{12}(SO_4)$	₃ .24H ₂ O			A.	$H_{2(g)} + I_{\overline{xg}} \rightarrow 2HI_{(g)}$		
		B.	CuCO ₃ .Cu(OH)2			B.	$2NO_{2g} \rightarrow N_2O_{4(g)}$		
		S:	NaHS ₁				Č. D.	$PC \longleftrightarrow PCl_{3(g)} + Cl_{2(g)}$		
			2				D.	$2NO \underset{2g}{\longleftrightarrow} N_{2}O_{4(g)}$ $PC \underset{3(g)}{\longleftrightarrow} PCI_{3(g)} + CI_{2(g)}$ $ZnO_{(s)} + CO \underset{2g}{\longleftrightarrow} ZnCO_{3(s)}$		
21.		How m	nany grams of H	SO ₄ are n	ecessary for the	29.	For a	general equation of the nature $xP+yQ \longleftrightarrow mR$		
		prepara	ation of 0.175 dn	1 ³ of 6.00	MH ₂ SO ₂ ?			the expression for the equilibrium constant is		
		A.	206.0 g		2 4		A.	$k [P]^{x}[Q]^{y}$		
		B.	103.0 g				B.	$[P]^{x}[Q]^{y}$		
		C.	98.1 g							
		D.	51.5 g					$[R]^m[S]^n$		
			[S = 1]	32.06, O	= 16.00, H = 1.00].					
							C.	$[R]^m[S]^n$		
22.			r (ll) tetraoxosul _l							
					odes. Which of the			$[P]^{x}[Q]^{y}$		
				at the an	ode and cathode					
		respect	ively.				D.	m [R] n [S]		
	A.		opper and oxyge							
	B.		xygen and coppe					X [P] y [Q].		
	C.		ydrogen and cop							
	D.	Co	opper and hydrog	gen		30.	Whic	h of these statements is TRUE about		
		~ -					carbo	n(1V)oxide?		
23.			ate the mass, in l	_			A.	It supports combustion		
			ed by the electro				B.	It is strong acidic in water		
				-	hours at 500 amperes.		C.	It is very soluble in water		
		A.	2.7	В.	5.4		D.	It supports the burning of magnesium to		

31.

10.8

D. 21.7

[Faraday = $96,500 \text{ C mmol}^{-1}$, Mg = 24]

 $MnO_2 + 2Cl^2 + 4H \longrightarrow Mn^{2+} + Cl_2 + 2HO$. The change 24. is oxidation numbers when the manganese, chlorine and hydrogen ions react according to the above equation are respectively.

Ā.

2, 2, 4 -2, 1, 0

B.

-1,-24 2, 4, 0

 $S_2O3^{2-} + I_2 \longrightarrow S_4O6^{2-} + 21$. In the reactionabove, the oxidizing agents is A. S_2O3^{2-} B. I_2 C. S_4O6^{2-} D. I25.

D.

In the experiment above, Z can be

a solution of sodium dioxonitrate(lll)and A. ammonium chloride

B. a solution of lead trioxonitrate(V)

produce magnesiumoxide.

	C.	a solution of s		xonitrate(V)and	42.		СН	3		
	D.		tetraoxosul	phate (VI) acid and		CH ₃ -C	$C = CH^-CH_2^-CH$	I H⁻CH₃		
32.	for met and eth	of the following tal welding? 1. C	g combinate Dxygen and gen and oxy	ion of gases is used ethyne. Il Hydrogen ygen. 1V Ethyne, 111 and 1V 11 and 1V		(. 2, 5-dime	or the hydro 5-methylhex ethylhex-2- ethylhept-3- ethylhexpt-	x-2-ene ene ene	ove is
33.	Which in air?	of the following	goxides of	nitrogen is unstable	43.		n of the followin			ondary
	Α.	NO ₂	B.	NO		A.	CH CH C	H-CH.		
	C.	N_2O_4	D.	N_2O_5			CH ₃ -CH ₂ -C	11 0113		
	C.	1,204	D.	11205			Ö	Н		
34.		s formed when ar with sodium hy hydrogen nitrogen(1V) o oxygen ammonia	droxide is	rioxonitrate (V) is		C. D.	CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ OCE			
35.	Safety	matches contain	sulphur ar	nd				СН		
33.	A.	Potassiumtrio	xochlorate	(V)				3		
	B.	Potassiumtrio Potassium trio	xonitrate (Ŷ) ´	44.		of the following		ids reacts v	vith sodium
	C.	Charcoal			metals	s as well a	as silver and cop	pper salt.		
	D.	Phosphorus s	ulnide			A.	$CH_3Ca \equiv C^{-1}$	-CH ₃		
		_	_			В	CH ₃ CH ₂ CH ₂	CH_2CH_3		
36.		Addition of an aqueous solution of barium chloride to the aqueous solution of a salt gives a white				C.	CH_3Ca — CH_3			
	to the					D.	CH₃CH - CH (CH_3		
	precipa	ate.			45.	Whiel	h of the following	ng areisome	ers?	
	A.	nitrate	B.	carbonate	15.	A.	Ethanol and			
	C.	chloride	D.	sulphide		В.	Benzene and	•		
37.	Coding	n hydroxide solu	ition oon h	a conveniently		C.	Ethanol and		ZCIIC	
31.		in a container m		Convenientry		D.	Trichloromet		etrachloron	nehane
		lead	B.	zino						
	A. C.			zinc	46.	The fu	inction group pr	esent in an	treatment	with a
	C.	aluminum	D.	copper		satura	ted solution of N	,		
38.	Which	of the following	is NOT us	ed as raw material		A.	hydroxyl gro			
	in the	solvary process?				B.	carbonalkox			
	A.	Ammonia				C.	carbonyl gro			
	B.	Sodium chlori	de			D.	carboxy grou	ıp.		
	C.	Calcium trioxo	carbonate		47.	Thech	aracteristic reac	tion of carb	onvl compo	oundsis.
	D.	Sodium trioxo	carbonate(\	V1)		A.	Substitution	В.	Elimina	
39.	Duralu	min consists of a	luminum	conner		C.	Addition	D.	Saponi	ficatioon
3).		nc and gold	iuiiiiiiiiii, v	copper,	40				10.10/	
	B. lea C. nie	ad and manganes			48.		ganic compound % hydrogen has			
	D. ma	anganese and ma	ignesium.			C.	242	_	232	
						C.	CHO	D.	CHO	
40.		$+ H_2O_{(1)}$ Ca(Coresented by the		= -65kJ. The ation is known as.	49.		als can be differ on with.	rentiated fro	om alkanor	nes by
	Α.	dissolution	В.	slackin	A.	reacti	2,4-dinitroph	enlhydrazi	ne	
	C.	liming	D.	mortaring	B.		hydrogen cy			
/ 1	The	rhon atoms in -+	hone ore		C.		sodium hydr		ite	
41.		rbon atoms in et			D.		tollen's reage	-		
	A.	sp ³ hybridized					•			
	B.	sp hybridized			50.	An ex	ample of a poly	saccharide i	is	
	C.	sp ² hybridized					A.	dextro		mannose
	D.	not hybridized	1.				C.g	lucose	D.	starch.

Chemistry 1993

1. The dissolution of common salt in water is physical change because

A. the salt can be obtained by crystallization

- B. the salt can be recovered by the evaporation of water.
- C. Heat is not generated during mixing
- D. The solution willnot boil at 100°C
- 2. Which of the following substances is mixture?

A. Sulphur powder

B. Bronze

C. Distilled water

D. Ethanol

3. How many moles of oxygen molecules would be produced dfrom the decomposition of 2.5 moles of potassium trioxochlorate (V)?

A. 2.50 C. 3.75 B. 3.50

, . D. 7.50

4. A balanced chemical equation obeys the law of

A. Conservation of mass

B. Definite proportions

C. Multiple proportions

D. Conservation of energy

5. At 25°C and 1 atm, a gas occupies a volume of 1.50 dm³. What volume will it occupy at 100°C at 1 atm?

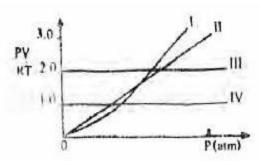
A. 1.88 dm³

B......6.00dm³

C. $18.80 \, \text{dm}^3$

D 60.00dm³

6. A gaseous mixture of 80.0 g of oxygen and 56.0 g of nitrogen has a total pressure of 1.8 atm. The partial pressure of oxygen in the mixture is


A. 0.8 atmC. 1.2 atm

B. 1.0 atm

C. 1.2 atm D. 1.4 atm

[O = 16, N = 14]

7.

Which of the curves above represents the behavior of 1 mole of an ideal gas?

A. 1

B. 11

C. 111

D. IV

8. For iodine crystals to sublime on heating, the molecules must acquire energythat is

A. less than the forces of attraction in the solid

B. equal to the forces of attraction in the solid

C. necessary to melt the solid

- D. greater than the forces of attraction in both solid and the liquid phases
- 9. An element, E, has the electronic configuration $1s^22s^22p^63s^23p^3$. The reaction of E with a halogen X can give.

A. EX and EX

X_{_}

B. EX₂ only

C. EX_5 only

D. EX_2 and EX_3

10. Two atoms represented as $^{235}_{92}$ U and $^{238}_{92}$ U are

A. isomers

B. allotropes

C. isotopes

D. anomers

11. As the difference in electronegativity between bonded atoms increase, polarity of the bond

A. decreases

B. increases

C. remains unchanged

D. reduces to zero.

12. Which group of elements forms hydrides that are pyramidal in structure?

A. 111

B. 1V

C. V

D. VI

13. Water has a rather high boiling point despite its low molecular mass because of the presence of

A. hydrogen bonding

B. covalent bonding

C. ionic bonding

D. metallic bonding

14. Argon is used in gas-filled electric lamps because it helps to

A. prevent the reduction of the lamp filament

B. prevent oxidation of lamp filament

C. make lamp filaments glow brightly

D. keep the atmosphere in the lamp inert.

15. The air around a petroleum refinery is most likely to contain

A. CO₂ SO₃ and N₂O

B. CO, CO and N₂O

C. SO₃ CO and NO₂

D. PH₃H₂O and CO₃

16. Water can be identified by the use of

A. an hydrogen copper(11) tetraoxosulphate(1V)

B. an hydrogen sodium trioxocarbonate(1V)

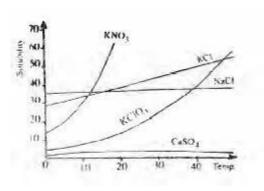
C. potassium heptaoxochromate(vii)

D. copper (11) trioxocarbonate(iv)

17. The phenomenon whereby sodium trioxocarbonate
(1) decahydrate loses some of its water crystallization
on exposure to the atmosphere is known as

deliquescence

B. hygroscopy


C. effervescence

A.

D. efflorescence

- A student prepares 0.5 M solution each of hydrochloric 18. and ethanoic acids and then measured their pH. The result would show that the
 - A. pH values are equal
 - B. HCl solution has higher pH
 - C. Sum of the pH values is 14
 - D. Ethanoic acid solution has a higher pH.

19.

For which salt in the graph above does the solubility increase most rapidly with rise in temperature

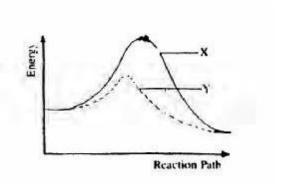
- CaSO, A.
- KNO₂ B.
- C. NaCl
- D. **KCl**
- 20. $NH_3 + H_3O \longrightarrow NH_4 + H_2O$. it may be deduced from the reaction above that
 - a redox reaction has occurred A.
 - B. H₂O⁺ acts as an oxidizing agent
 - C. H₂O⁺ acts as an acid
 - Water acts as an acid D.
- 4.0 g of sodium hydroxide in 250 cm³ of solution 21. contains
 - 0.40 moles perdm³ A.
 - 0.10 moles perdm³ B.
 - C. 0.04 moles perdm³
 - 0.02 moles perdm³ D.
- 22. During the electrolysis of a salt of metal M, a current of 0.05 A flow for 32 minutes 10 second and deposit 0.325 g of M. What is the charges of the metal ion?
 - A. 1
 - **B.2**
 - C.3

[M = 65, l = 96,500 C per mole of electron]

- 23. Which of the following reactions occurs at the anode during the electrolysis of a very dilute aqueous solution of sodium chloride?
 - OH-CH-OH A.
 - B. $Cl^{-} - e^{-} \longrightarrow Cl$
 - C. OH + Cl-HCl
 - $Na^+ + e^- \stackrel{Hg}{\longrightarrow} a/Hg$ amalgam D.

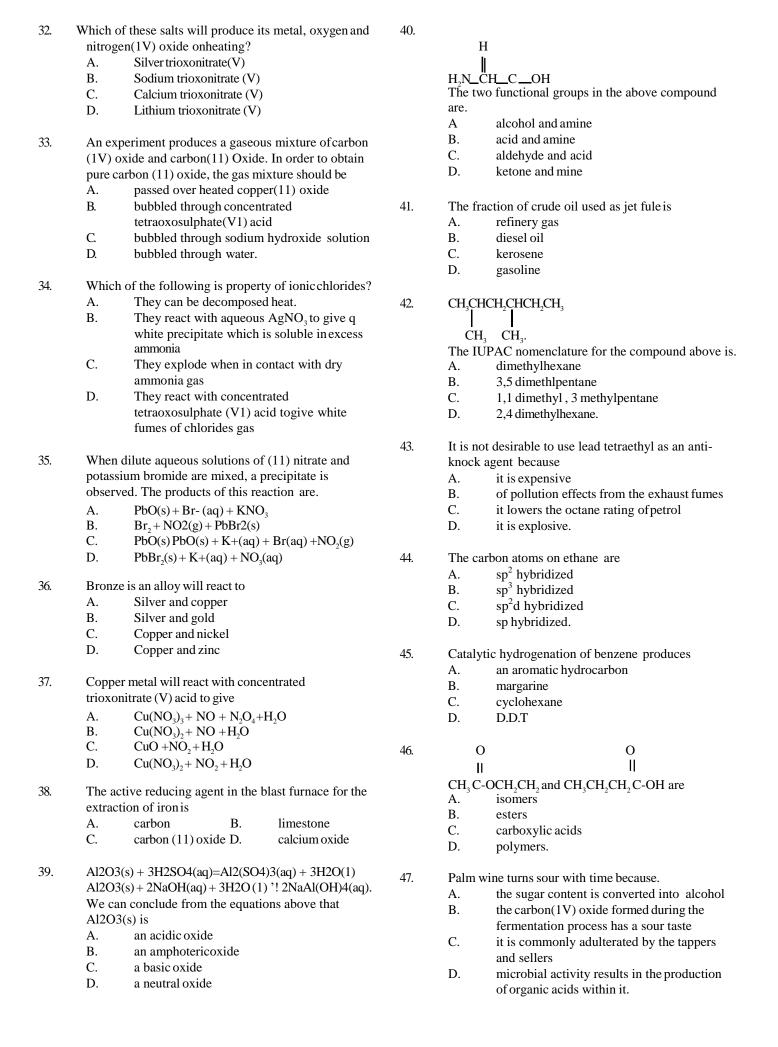
24.
$$\begin{array}{c|c} Half-cell\ reaction & E^0 \\ \hline Cu2+(aq)+2e \longrightarrow Cu(s) & +0.34V \\ Fe2+(aq)+2e \longrightarrow Fe & -0.44V \\ Ba2+(aq)+2e \longrightarrow Ba(s) & -2.90V \\ Zn2+(aq)+2e \longrightarrow Zn(s) & -0.76V \\ \end{array}$$

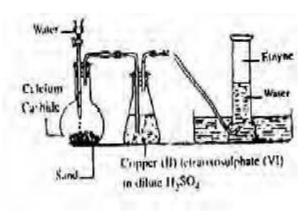
From the data above, it can be deduced that the most powerful reducing agent of the four metals is


> Cu A. C.

Ba

- B. Fe D. Zn
- 25. The oxidation states of chlorine in HOCl, HClO₃ and HClO₄ are respectively
 - -1, +5 and +7A.
 - B. -1, -5 and 7
 - C. +1, +3 and +4
 - D. +1, +5 and +7
- A reaction takes place spontaneously if 26.
 - ÄG=O A.
 - $\ddot{A}S < O$ and $\ddot{A}H > O$ B.
 - C. ÄH < TÄS
 - D. ÄG>O
- 28. The standard enthalpies of formation of CO₂(g), $H_2O(g)$ and CO(g) in kJ mol-1 are -394, -242 and -110 respectively. What is the standard enthalpy change for the reaction $CO(g) + H_2O \longrightarrow CO_2(g) + H_2(g)$?
 - -42kJ mol-1 A.
 - B. +42 kJmol-1
 - C. -262 kJmol-1
 - D. +262 kJmol-1
- 29. 10 g of a solid is in equilibrium with its own vapour. When 1 g of a small amount of solid is added, the vapour pressure
 - A. remain the same
 - B. drops


30.


- C. increase by 1%
- increase by 99% D.

In the diagram above, curve X represents the energy profile for a homogeneous gaseous reaction. Which of the following conditions would produce curve Y for the same reaction?

- A. increase in temperature
- B. increase in the concentration of a rectant
- C. addition of a catalyst
- D. increase in pressure.
- 31. $NaCl(s) + H_2SO_4(1) \longrightarrow HCl(g) + NaHSO_4(s)$. In the reaction above. H2SO4 behaves as
 - A. a stron acid
 - B. an oxiding agent
 - C. a good solvent
 - D. a dehydrating agent.

The function of the copper (11) tetraoxosulphate (V1) in dilute H₂SO₄ in the figure above is to

- Dry the gas A.
- B. Absorb phosphine impurity]
- C. Absorb ethene impurity
- D. Form an acetylide withethyne.

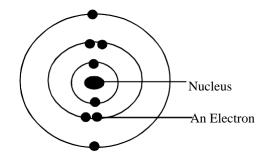
- 49. Which of the represents Saponification?
 - reaction of carboxylic acids withsodium hydroxide
 - B. reaction of Alkanoates with acids
 - C. reaction of carboxylic acids withsodium
 - D. reaction of Alkanoates with sodium hydroxide.
- 50. The confirmatory test for Alkanoic acids inorganic qualitative analysis is the
 - A. turning of wet blue litmus paper red
 - reaction with alkanols to form esters B.
 - C. reaction with sodium hydroxide to foemsalt
 - D. reaction with aqueous Na2CO3 to liberatea gas which turns lime water milky.

Chemistry 1994

- 1. A mixture of sand, ammonium chloride and sodium chloride is best separated by
 - sublimation followed by addition of water A. and filtration
 - sublimation followed by addtion of water B. and evaporation
 - C. addition of water followed by filtration and sublimation
 - D. addition odf water followed by crystallization and sublimation.
- 2. A pure solid usually melts
 - over a wide rangeof temperature
 - over a narrow range of temperature B.
 - at a lower temperature than the impureone C.
 - D. at the same temperature as the impureone.
- At the same temperature and pressure, 50 cm³ of 3 nitrogen gas contains the same number of molecules
 - 25 cm³ of methane A.
 - 40 cm³ of hydrogen B.
 - 50 cm³ of ammonia C.
 - 100 cm³ of chlorine D.
- 8 g CH₄occupies 11.2dm³ at s.t.p. What volume would 4. 22 g of CH₃CH₂CH occupy under the sme condition? 11.2 dm^3
 - A. $3.7 \, dm^3$
- В.
- D.
- 22.4 dm^{3} C.
- $33.6 \, dm^3$
 - [C= 12, H=1]
- To what temperature must a gas 273 K be heated in 5. order to double both its volume and pressure?
 - A. 298 K
- B. 546 K
- C. 819K
- D. 1092 K

- 6. For a gas, the relative molecular mass is equal to 2Y. What is Y?
 - A. The mass of the gas
 - B. The vapour density of the gas
 - The volume of the gas C.
 - The temperature of the gas D.
- 7. The densities of two gases, X and Y are 0.5 g dm⁻³ and 2.0 g dm⁻³ respectively. What is the rate of diffusion of X relative to Y?
 - A. 0.1
- B. 0.5

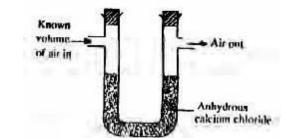
4.0


- C. 2.0
- D.
- 8. An increase in temperature curves causes an increase in the pressure of a gas because
 - A. it decreases the number of Collision between the molecules
 - B. the molecules of the gas bombard the walls of the container more frequently
 - C. it increase the number of Collision between the molecules
 - D. it causes the molecules to combine
- 9. The shape of ammonia molecules is
 - trigonal planar A.
 - B. octahedral
 - square planar C.
 - D. tetrahedral.
- 10. The number of electrons in the valence shell of an element of atomic number 14 is
 - A. 1
- 2 B.
- C. 3
- D.
- 4

- 11. Which of the following physical properties decreases down a group ion the periodic table?
 - A. Atomic radius
 - B. Ionic radius

12

15.


- C. Electropositivity
- D. Electronegativity.

The diagram above represents atom of

- A. Mangnesium
- B. Helium
- C. Chlorine
- D. Neon
- 13. Elements X, Y and Z belongs to groups 1,V and V11 respectively. Which of the following is TRUE about the bond types of XZ and YZ
 - A. Both are electrovalent
 - B. Both are covalent
 - C. XY is electrovalent and YZ₃ is covalent
 - D. XZ is covalent and YZ_3 is electrovalent.
- 14. Which of the following atoms represents deuterium?

No of	No of	No of				
protons	neutrons	electrons				
A. 1	0	0				
B. 1	0	1				
C. 1	1	1				
D. 1	2	1				

The set-up above would be useful for determining the amount of

- A. Oxygen in air
- B. Water vapour in air
- C. CO₂ in air
- D. Argon in air.
- 16. A solid that absorbs water from the atmosphere and forms an aqueous solution is
 - A. hydrophilic
 - B. efflorescent
 - C. deliquescent
 - D. hygroscopic

- 17. A major effect of oil pollution in coastal water is the
 - A. destruction of marinelife
 - B. desalination of water
 - C. increase in the acidity of the water
 - D. detoxification of thewater.
- Sodium chloride has no solubility product value because of its.
 - A. saline nature
 - B. high solubility
 - C. low solubility
 - D. insolubility
- 19. The solubility in moles per dm³ of 20.2g of potassium trioxonitrate (V) dissolved in 100g of water at room temperature is
 - A. 0.10
 - B. 0.20
 - C. 1.00
 - D. 2.00
 - [K = 39, O = 16, N = 14]
- 20. A few drops of concentrated PCl are added to about 10cm³ of a solution of pH 3.4. The pH of the resulting mixture is
 - A. less than 3.4
 - B. greater than 3.4
 - C. unaltered
 - D. the same as that of pure water
- 21. Which of the following compounds is a base?
 - A. CO,
 - B. CaÔ
 - C. H₂PO₂
 - D. CH,COOH
- 20cm³ of a 2.0 M solution of ethanoic acid was added to excess of 0.05 M sodium hydroxide. The mass of the salt produced is
 - A. 2.50 g
 - B. 2.73 g
 - C. 3.28 g
 - D. 4. 54g

$$[Na = 23, C = 12, O = 16, H = 1]$$

- 23. What volume of oxygen measured at s.t.p would be liberated on electrolysis by 9650 coulombs of electricity?
 - A.....22.4 dm3
 - B.....11.2 dm³
 - C_{m} 1.12 dm³
 - D......0.560 dm³

[Molar Volume of gas = 22.4 dm3, F = 96,500 C mol-1]

- 24. Crude copper could be purified by the electrolysis of concentrated copper911) chloride if the crude copper is
 - A. made both the anode and the cathode
 - B. made the cathode
 - C. made the anode
 - D. dissolved in the solution.

25. $H'(s) + HO(1) \longrightarrow H_2(g) + OH'(aq)$. From the equation above, it can be inferred that the

A. reaction is a double decomposition

B. hydride ion is reducing agent

C. hydride ion is an oxidizing agent

D. reaction is neutralization.

26

Emay, Net.

Filmod 1 1/13

HEI

Dyddings

The ΔH for the reaction represented by the energy profile above is

A. -100kJ mol⁻¹

B. +100 kJmmol⁻¹

C. +50kJ mol⁻¹

D. -50 kJmol⁻¹

27. An anhydride is an oxide of a non-metal.

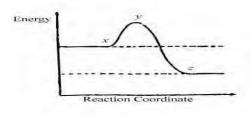
A. Which will not dissolve in water

B. whose solution water has pH greater than7

C. whose solution in water has a pH less than 7

D. whose solution in ware has a pH of 7

28. $MnO_4(aq) + 8H^+(aq) + Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+} + 4H_2O(1)$. The oxidation number of manganese in the above reaction change from


A. +7 to +2

B. +6 to+2

C. +5 to +2

D. +4 to+2

29.

In the diagram above, the activation energy is represented by

A. y-x

B. x

C. x-z

D. y

30. Which of the following is TRUE of Le Chatelier's principle for an exothermic reaction?

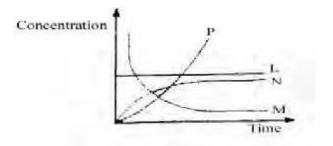
A. Increase in temperature will cause an increase in equilibrium constant

B. Increase in temperature will cause adecrease in the equilibrium constant

C. Addition of catalyst will cause an increase in the equilibrium constant.

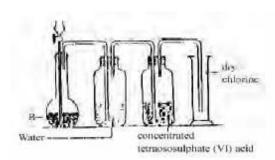
C. Addition of catalyst will cause a decrease in the equilibrium constant.

31. Which of the following are produced when ammonium trioxonirate(V) crystals are cautiously heated in a hard glass round bottomed flask?


A. N_2O and steam

B. NO₂ and ammonia

C. N_2O_4 and NO_2


D. NO and NO₂

32. 2HCl(aq) + CaCO₃(s)—CaCl₂(aq) + H2O(10 + CO₂g). From the reaction above, which of the following curves represents the consumption of calcium trioxocarbonate(IV) as dilute HCl is added to it?

A. L C. N B. M D. P

33.

In the diagram above, R is a mixture of

A. potassium tetraoxochlorate(Vii) and concentrated H₂SO₄

B. potassium tetraoxomanganate (vii) and concentrated HCl

C. manganese(1V) oxide and concentrated HCl

D. manganese (1V) oxide and concentrated HCl

34. Which of these metals CANNOT replace hydrogen from alkaline solutions?

A. Aluminium

B. Zinc

C. Tin

D. Iron

35. Clothes should be properly rinsed with water after bleaching because

A. the bleach decolourizes the clothes

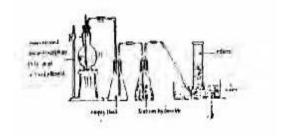
B. chlorine reacts with fabrics during bleaching

C. the clothes are sterilized during bleaching

D. hydrogen chloride solution is produced during bleaching.

- 36. Which of these solutions will give a white precipate with a solution of barium chloride acidified with hydrochloride acid?
 - A. Sodium trioxocarbonate(1V)
 - B. Sodium tetraoxosulphate
 - C. Sodium trioxosulphate(1V)
 - D. Sodium sulphides
- 37. SO₃ is NOT directly dissolved in water in the preparation of H₂SO₄ by the contact process because.
 - A. the reaction between SO3 and water is violently exotheremic
 - B. acid is usually added to water and never water to acid
 - C. SO₃ is an acid not dissolve in water readily
 - D. SO₃ is an acidgas.
- 38. In an electrolytic set-up to protect iron from corrosion, the iron is
 - A. made the cathode
 - B. made the anode
 - C. used with a metal of lower electropositive potential
 - D. initially coated withtin
- 39. Which of the following is NOT true of metals?
 - A. They are good conductors of electricity
 - B. They ionize by electron loss
 - C. Their oxides are acidic
 - D. They have highmelting points.
- 40. Which of the following is the correct order of decreasing activity of the metal Fe, Ca, Al and Na?
 - A. Fe > Ca > Al > Na
 - B. Na > Ca > Al > Fe
 - C. Al > Fe > Na > Ca
 - D. Ca > Na > Fe > Al.

Η


The IUPAC name of the compound above is

- A. 2,2-dimethyl but-1-yne
- B. 2,2-dimethyl but-1-ene
- C. 3,3-dimethyl but-1-ene
- D. 3,3-dimethyl but-1-yne
- 43. When sodium is added to ethanol, the products are
 - A. sodium hydroxide and water
 - B. sodium hydroxide and hydrogen
 - C. sodium ethnocide and water
 - D. sodium ethnocide and hydrogen.
- 44. The general formula of alkanones is
 - A. RCHO
 - B. R,CO
 - C. RCOOH
 - D. RCOOR

- 45. When sodium ethanoate is treated with a few drops of concentrated tetraoxosulphate(V1) acid one of the products is
 - A. CH₃COOH
 - B. CH,COOH,
 - C. CH₃COOC₃H₅
 - D. C2H₄COOCH
- 46. One mole of a hydrocarbon contains 48 g of carbon. If its vapour density is 28, the hydrocarbon is
 - A. an alkane
 - B. an alkene
 - C. an alkyne
 - D. aromatic

[C=12, H=1]

Use the diagram below to answer questions 47 and 48.

The reaction taking place in flask G is known as

- A. hydrolysis
- B. double decomposition
- C. dehydration
- D. pyrolysis
- 48. The caustic soda solution in the conical flask serves to
 - A. dry ethene
 - B. remove carbon (1V) oxide fromethene
 - C. remove carbon (11) oxide from ethene
 - D. remove sulphur (1V0 oxide from ethene.
- 49. Which of the following orbital of carbon are mixed with hydrogen in methane?
 - A. 1s and 2p
 - B. 1s and 2s
 - C. 2s and 2p
 - D. 2s and 3p
- 50. Which of the following reagents will confirm the presence of instaurations in a compound?
 - A. Fehling's solution
 - B. Bromine water
 - C. Tollen's reagent
 - D. Benedict's solution

Chemistry 1995

1.	Chromatography is used to separate components of mixtures which differ in their rates of A. diffusion B. migration C reaction D. sedimentation.	10.	Which letter represents a non-metal that is a solid at room temperature? A. T B. R. C. J. D. X.				
2.	Which of the following is an example of chemical change? A. Dissolution of salt in water. B. Rusting of iron C. Melting ofice. D. Separating a mixture by distillation.	11.	In the oil drop experiment, Milikan determined the A. charge to mass ratio of theelectron B. mass of theelectron C. charge of the electron D. mass of the proton.				
3.	The number of hydrogen ions in 4.9 g of tetraoxosulphate (VI) acids is A. 3.01×10^{22} B. 6.02×10^{22} C. 3.01×10^{23} D. 6.02×10^{22} . (S=32,O=16,H=1,N _A =6.02 x 10^{23}).	12.	The stability of ionic solids is generally due to the A. negative electron affinity of most atoms B. crystal lattice forces C. electron pair sharing D. positive ionization potentials.				
4.	What volume of oxygen will remain after reacting 8 cm ³ of hydrogen with 20 cm ³ of oxygen? A. 10 cm ³ B. 12 cm ³ C. 14 cm ³ D. 16 cm ³ .	13.	Which of the following statements is FALSE about isotopes of the same element? A.They have the same number of electrons in their outermost shells. B. they have different atomic masses.				
5.	A gas sample with initial volume of 3.25 dm3 is heated and allowed to expand to 9.75 dm3 is heated and allowed to expand to 9.75 dm³ at constant pressure. What is the ratio of the final absolute temperature to the initial absolutetemperature? A. 3:1 B. 5:2 C.5:4	14.	C. They have the same atomic number and the same number of electrons. D. they have the same atomic number but different number of electrons. Helium is often used in observation balloons because				
6.	D. 8:3 Two cylinders A and B each contains 30 cm ³ of oxygen and nitrogen respectively at the same temperature and pressure. If there are 5.0 moles of nitrogen, then the mass of oxygen is A. 3.2 g B. 6.4g	14.	it is A. light and combustible B. light and non-combustible C. heavy and combustible D. heavy and non-combustible.				
7.	C. 80.0g D. 160.0g. A liquid begins toboil when A. its vapour pressure is equal to vapour pressure of its solid at the given temperature B. molecules start escaping from its surface C. its vapour pressure equals the atmosheric pressure D. its volume is slightly increased.	15.	When plastic and packaging materials made from chloromethane are burnt in the open, the mixture of gases released into the atmosphere is most likely to contain A. ethane B. chlorine C. hydrogen chlorine D. ethane.				
8.	A particle that contains 8 protons, 9 neutrons and 7 electrons could be written as A. 16 O B. 17 O ⁺ C. 178 O ⁺ D. 178 O. 8	16.	Deliquescent substances are also A. efflorescent B. anhydrous C. hydroscopic D. insoluble.				
9.	Use the section of the periodic table below to answer questions 9 and 10.	17. 18.	The difference between colloids and suspensions is brought out clearly by the fact that while colloids A. do not scatter light, suspensions cannot be so separated B. can be separated by filteration, suspension cannot be separated C. can be separated by a membrane, suspensions cannot D. do not settle out on standing, suspensions do. In general, an increase in temperatue increases the solubility of a solute in water because				
	C. R and L. D. G and L.	18.	In general, an increase in temperatue increases the solubility of a solute in water because A. more solute molecules collide with each other				

B. most solutes

dissolve with the evolution of heat		B. Condensation of water vapour.
C. more solute molecules dissociate at higher		C. Boiling a sampled of water
temperature		D. Cooling a saturated solution.
D. most solutes dissolve with absorption of		
heat.	30.	Which of the following equibrai is shifted to the
Neutralization involves a reaction between $H_{3}^{O^{+}}$ and		right as a result of an increase in pressure?
A. CI^{-} D. CO_{3}^{2-} B. OH^{-} C.		$ \begin{array}{ccc} A. H_{2(g)} + I_{2(g)} & 2H_{(g)} \\ B.2N O & N2O \end{array} $
D. CO ₃ ²⁻ .		2 2/2
Which of the following solutions will have a pH $<$ 7?		$C.PC\overset{2}{\underset{(g)}{ }} \overset{2}{\underset{(g)}{\longleftarrow}} PCl_{3(g)} + Cl_{2(g)}$
A. $Na_2SO_{4(aq)}$ B. $NaCI_{(aq)}$	2.1	$D. 2O_{3(g)} \longleftrightarrow 3O_{2(g)}.$
C. $Na_2CO_{3(aq)}$ D. $NH_4CI_{(aq)}$ What is the pH of a 2.50 x 10^{-5} M solution of sodium	31.	The arrangement above can be used for the collection of
		A. sulphur (IV) oxide
hydroxide? A. 3.6 B. 5.0		B. ammonia
A. 5.0 B. 5.0 C. 9.4 D. 12.0.		C. nitrogen
C. 9.4 D. 12.0.		D. hydrogen chloride.
14	32.	
12	32.	
8		
6		Energy Nagi 31 has
25VOL OF BASE		
The graph above shows the pH changes for the titration		12Nth _{rost}
of a		Roading Carrelingues
A. strong acid versus strong base		
B. weak acid versus strong base		The activation energy of the uncatalysed reaction is
C. strong acid versus weak base.		A.x
D. weak acid versus weak base.		B. $x+y$
In the process of silver-plating a metal M, the metal M		C. x-y
is the		D. y
A. anode and a direct current is used	33.	It can be deduced that the rate of the reaction
B. cathode and an alternating current is used		A. for path I is higher than path II
C. anode and an alternating current is used.		B. for path II is higher than path I
D. cathode and a direct current is used.		C. is the same for both paths at all
How many moles of copper would be deposited by		temperatures
passing 3F of electricity through a solution of copper (II) tetraoxosulphate (VI)?		D. depends on the values of both x and y at all
A. 0.5 B. 1.0		pressures.
C. 1.5 D. 3.0	34.	In the industrial production of hydrogen from natural
F = 96500 C mol-1.	JT.	gas, carbon (IV) oxide produced along with the
2Cl- $CI_{2(g)} = 2e$ The above half-cell reaction		hydrogen is removed by
occurring at the anode during the electrolysis		A. washing under pressure
of dilute ZnCI, solution is		B. passing the mixture into the lime water
A. ionization B. oxidation		C. using ammoniacal copper (I)chloride
C. reduction. D. recombination.		D. drying over phosphorus (V) oxide.
Which of the following is a redox reaction?		
A. $KCI_{(ag)} + H_2SO_{4(aq)} \longrightarrow KHSO_{4(aq)} + HCI_{(aq)}$	35.	Sulpur exists in six forms in the solid state. This property
B. $2\text{FeBr}_{2(\text{ag})} + \text{Br}_{2} \longrightarrow 2\text{FeBr}_{3(\text{aq})}$		is known as
$AgNO_{3(-)} + FeCI_{3} \longrightarrow 3AgCI_{(-)} + CO Fe(NO_{3})_{3(-)}$		A. isomerism B. allotrophy
		C. isotopy D. isomorphism.
Cr O ²⁻ + $14H^+$ + $6I^ \longrightarrow_+^2 Cr^3$ + $3I$ + $7H$ O ^{(1)+.}		

36.

37.

A.

C.

A gas that will turn orange potassium

A. sulpur (VI) oxide

C. sulpur (IV) oxide

B. hydrogen sulphide

D. hydrogen Chloride.

 Ca^{2+}

 $Zn^{^{2+}}$

heptaoxodichromate (VI) solution to clear green is

Which of the following ions will give a white precipitate

with aqueous NaOH and soluble in excess of the base?

B.

D.

 $\begin{array}{c} Mg^2 \\ Cu^{2+}. \end{array}$

19.

NO₃ 20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

(aq) '!

C. 2

proceed favourably in the forward reaction at

low temperature

all temperatures

all pressures.

high temperatures

equation above is

B. 1

A. O.

A.

B.

C.

D.

A.

entrophy?

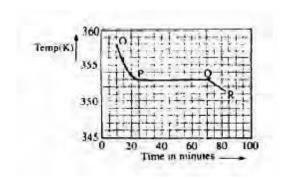
The change in the oxidation number of oxygen in the

If an equilibrium reaction has "H < O, the reaction will

Which of the following processes lead to increase in

mixing a sample of NaCl andsand

2(g)


D.7.

38.	In the extraction of iron in the blast furnace, limestone is used to	45.	Aromatic and aliphatic hydrocarbons can be distinguished from each other by the				
	A. release CO ₂ for the reaction		A. action of bromine				
	B. reduce the iron		B. use of polymerizationreaction.				
	C. Increase in the strenght of Iron		C. Action of heat				
	D. remove impurities.		D. Use of oxidation reaction				
39.	Which of the following compound will impart abrick- red colour to a non-luminous Busenflame?	46.	The role of sodium chloride in the preparation of soap is to				
	A. NaCl B. LiCl		A. purify the soap				
	C. CaCl ₂ D. MgCl.		B. separate the soap from glycerol				
			C. accelerate the decomposition of the fat or oil				
40	Group 1 A metals are not found free in nature because		D. react with glycerol.				
	they A. are of low melting andboiling points B. have weak metallic bonding		CH ₃ CH ₂ =CH ₂ -C-H				
	C. conduct electricity and heat D. are veryreactive.	47.	The functional group represented in the compound above is				
			A. alkanol B. alkanal				
41.	$CH_3COOH + CH_3CH_2OH_3 COOH_3OOH_3OOH_3OOH_3OOH_3OOH_3OOH_3OOH_$		C. alkanone D. alkanoate				
	reaction of above are respectively						
	A. CH ₃ COCH ₃ andH ₂ O	48.	$C_x H_y + 4O_2$ 3CO ₂ + 2H ₂ O. The hydrocarbon,				
	B. CH ₃ CH ₂ COCH ₂ andH ₂ O ₂		$C_x H_y$ in the reaction above is				
	C. CH ₃ COOCH ₂ CH ₃ and H ₂ O ₃		A. propane B. propene				
	D. CH ₃ CH ₂ CHO and CH ₄ .		C. propyne D. propanone.				
42	$CHCl_3 + Cl_2 \longrightarrow HCl + CCl_4$. The reaction above is an	49.	An example of a secondary amine is				
	example of		A. propylene B. di-butylamine				
	A. an addition reaction		C . methylamine D. trimethylamine.				
	B. a substitution reaction	50	701 1 d 1 1 1 1 1 1 1 d 1 d 1 d 1 d 1 d 1				
	C. chlorination reactionD. a condensation reaction.	50.	The relatively high boiling points of alkanol are due to				
	D. a condensation reaction.		A. ionic bonding B. aromatic character				
43.	$CH_3 - CH - CH = CH - CH_3 CH_3$. The IUPAC		B. aromatic characterC. covalent bonding				
+3.	nomenclature for the compound above is		D. hydrogen bonding.				
	A. 1.1-dimenthyilbut –ene		D. Hydrogen bonding.				
	B. 2-methlypnet 3—ene						
	C. 4,4 –dimethy –1but –2–ene						
	D. 4 –methylpent –2 –ene.						
44.	Which of the following pairs has compounds that are isomers?						
	A. propanal and propanone						
	B. ethanoic acid and ethylmethanoate						
	C. ethanoic acid and thane -1 , 2 –diol						
	D. 2 –methylbutnae and 2,2 –dimethylbutane						
	Chamiss	10 1 1	1007				
	Chemist	IJ	1997				

- $35~{\rm cm}^3$ of hydrogen was sparked with $12{\rm cm}^3$ of oxygen at $110^{\rm o}$ C and $760~{\rm mm}$ Hg to produce steam. 1. What percentage of the total volume gas left after the reaction is hydrogen
 - A. 11% C. 35%
- B. 31% D. 69%

- 2.85 g of an oxide of copper gave 2.52g of copper on reduction and 1.90 g of another oxide gave 1.52 g of copper on reduction. The data above illustrates the lawof
 - A. constant composition
 - B. conservation of mass
 - C. reciprocal proportions
 - D. multiple proportions.

Use the graph below to answer question 3 and 4

A sample, X, solid at room temperature, was melted, heated to a temprature of 358 K and allowed to cool as shown in OPQR.

- The section PQ indicate that X is 3.
 - A. a mixture of salt
 - B. a hydrated salt
 - C. an ionic salt
 - D. a pure compound.
- 4.. The section OP suggests that X is in the
 - Liquid state A.
 - Solid/liquid state B.
 - Solid state C.
 - D. Gaseous state.
- An element, X, format a volatile hydride XH³ with a vapour density of 17.o. The relation mass of Xis
 - 34.0 A.
- B.
 - 31.0
- C. 20.0
- D. 14.0
- 6. A mixture of 0.20 mole of Ar, 0.20 mole of N^2 and 0.30 mole of He exerts a total pressure of 2.1 atm. The partial pressure of He in the mixture is
 - A. 0.90atm
- B. 0.80 atm
- C. 0.70atm
- D. 0.60atm
- If 30cm³ of oxygen diffuses through a porous plug in 7s, how long will it take 60 cm3 of chlorine to diffuse through the same plug
 - 12 s A.
- В. 14 s
- C. 21 s
- D. 30 s
- The temperature of a body decreases when drops of liquid placed on it evaporates because
 - the atmospheric vapour pressure has a cooling effect A. on the body
 - a temperature gradient exists between the drops of В. liquid and the body
 - C. the heat of vapourization is drawn from the bodycausing it to cool
 - the random motion of the liquid molecules causes a D. cooling effect on the body.
- The electron configuration of two elements with similar chemical properties are represented by
 - $Is^22s^2 2p^5$ and Is^22s^22p4
 - Is²2s² 2p⁴ and Is²2s²2p⁶3s¹ Is²2s²2p⁶3s¹ and Is²2sI B.
 - C
 - $Is^2 2s^2 2p^4$ and $Is^2 2sI$ D.

- 10. In the periodic table, what is the property that decrease along the period and increases down the group
 - A. Atomic number
 - B. Electron affinity.
 - C. Ionization potential
 - D. Atomic radius.
- Two elements, P and Q with atomic numbers 11 and 8 11. respectively, combine chemically values of x and y are
 - 1 and 1 A. C. 2 and 1
- В.
- 1 and 2 3 and 1 D.
- Oxygen is a mixture of two isotopes ¹⁶ O and ⁸ O with 12. relative abundance of 90% and 10% respectively. The relative atomic mass of oxygen
 - A. 16.0
- 16.2
- C. 17.0
- D. 18.0
- 13. 200cm³ of air was passed over heated copper in a syringe several times to produce copper (11) oxide. When cooled the final volume of air recorded was 158cm³. Estimate the percentage of oxygen in the air.
 - A. 31%
- 27%
- C. 21%
- D. 19%

B.

- 14. Which of the following gases is the most dangerous
 - A. Hydrogen sulphide
 - B. Carbon (1V)oxide
 - C. Sulphur (1V)oxide
 - Carbon (11) oxide D.
- 15. A major process involve in the softening of hard water is the
 - A. conversion of a soluble calcium salt to its trioxocarbonate (1V)
 - B. decomposition of calcium trioxocarbonate
 - C. conversion of an insoluble calcium salt to its trioxocrbonate (1V)
 - D. oxidation of calcium atom to its ions.
- 16. On recrystallization, 20g of magnesiumtetraoxosulphate (V1) forms 41 g of magnesium tetraoxosulphate (1V) crystals, MgSO₄.yH₂O. The value of y is
 - A.
- B. 3
- C. 5
- D. 7
- (Mg = 24, S=32, O=16, H=1)
- 17 A satyrated solution of AgCI was found to have a concentration of 1.30 x 100⁻⁵ mol dm⁻³. The solution product of AgCI. thereforeis.
 - 1.30x 10-5 mol 2 dm-6 A.
 - B. 1.30x 10-7 mol2 dm-6
 - C. 1.69x 10-10 mol2 dm-6
 - D. 2.60 x 10-12 mol2 dm-6
- 18. The hydroxyl ion concentration, (OH-), in a solution of sodium hydroxide of pH 10.0 is
 - 10⁻¹⁰ moldm⁻³ A.
 - $10^{-6} \, \text{moldm}^{-3}$ B.
 - 10^{-4} moldm⁻³ C.
 - 10^{-2} moldm⁻³ D.

19.	Which of the aqueous solution with the pH values below
	will liberate hydrogen when it reacts with magnesium
	metal?

13.0 A.

B. 7.0

C. 6.5 D. 3.0

20. Given that 15.00cm3 of H2SO4 was required to completelyneutralize 25.00 cm3 of 0.125 mol dm-3 NaOH, calculate the molar concentration of the acid solution.

> 0.925 moldm-3 B. A.

0.156 moldm-3

C. 0.104 mol dm-3 D 0.023 mol dm-3

When platinum electrodes are used during the 21. electrolysis of copper (11) tetraoxosulphate (1V) solution, the solution gets progressively

> acidic A.

B. basic

C. neutral D. amphoteric

22. Howmany faradays of electricity are required to deposit 0.20 mole of nickel, if 0.10 faraday of electricity deposited 2.98 g of nickel during electrolysis of its aqueous solution?

> A. 0.20

B. 0.30

C. 0.40 D. 0.50

23. What is the oxidation unmber of Z in K_1ZCI^6 ?

A. -3

B. +3

C. -6

D. +6

 $2H_2S(g) + SO_2(g) + H2O_{(1)} \longrightarrow 3S(s) + 3H_2O(1)...(I)$ 24. $3\text{CuO}(s) + 2\text{NH}_{2}(g) \longrightarrow 3\text{Cu}(s) + 3\text{H2}(1) + \text{N}_{2}(g)...(ii)$ In the equation above, the oxidizing agent in (I) and the reducing agent in (ii) respectivelyare

Α H₂S and NH₂

B C. SO₂ and CuO

SO, and NH 3

D. H₂S and CuO

 $2SO_3(g)+O_3(g) \longleftrightarrow 2SO_3(g)$ 25.

In the reaction above, the standard heats of formation of $SO_2(g)$ and $SO_2(g)$ are -297 kJ mol-1 and -396 kJ mol⁻¹ respectively.

The heat change of the reaction is

-99 kJ mol-1 A.

B. -198 kJmol-1

+198 kJ mol-1C.

+683 kJmol-1 D.

 $\frac{1}{2}$ N2(g) +1/2 O2(g); H- = 89 kJ mol-1 26.

> If the entropy change for the reaction above at 25°C is 11.8 J, calculate the change in free energy, G, for the reaction at 25°C

88.71 KJ A.

B. 85.48kJ

C. $-204.00 \, \text{kJ}$

D. -3427.40kJ

27. If the rate law obtained for a given reaction is rate=k(X)n(Y)m, what is the overall order of the reaction?

> A. nm

В. n

m

C. n+m

D. n-m

One method of driving the positon of equilibrium of an 28. endothermic reaction forward isto

> A. increase temperature at constant pressure

B. decrease pressure at constant temperature

C. cool down the apparatus with water

D. decrease temperature at constant pressure.

29. Oxidation of concentrated hydrochloric acid with manganese(1V) oxide liberates a gas used in the

manufacture of tooth pastes A.

B. treatment of simple goiter

C. valcanization of rubber

D. sterilization ofwater.

30.
$$mE+nF \longrightarrow pG+qH$$

In the equation above, the equlibrium constant is given by

A. (E)m(F)n(G)p(H)q

B. (E)(F)(G) (H)

C. (G)p(H)q(E)m(F)n

D. (G)(H)(E) (F)

31. A compound that will NOT produceoxygen on heating is

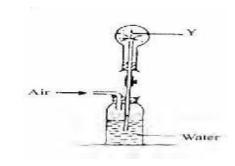
> potassium dioxonitrate(111) A.

B. lead (1V)oxide

C. potassium trioxochlorate (V)

potassium trioxochlorate (V) D.

32. Coal gas is made up to carbon (11) oxide, hydrogen and


> nitrogen A.

B. air

C. argon

33.

D. methane

In the diagram above, the gas Y could be

A. hydrogen chloride

B. oxygen

C. carbon (1V) oxide

D. chlorine.

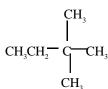
34.
$$2X_{(aq)}^{-} + MnO2_{(s)} + 4H_{(aq)}^{+} \rightarrow X_{2(g)} + Mn_{(aq)}^{2+} + 2H_{2(1)}^{-}$$

The reaction above can be used for the laboratory preparation of all halogens except fluorine because it is

- A. a poisonous gas
- B. an oxidizing agent
- C. electronegative in nature
- D. highly reactive.
- 35. The reaction that occurs during the laboratory test for the presence of tetraoxosulphate (V1)

A.
$$SO_{4(aq)}^{2-} + Ba_{(aq)}^{2+} \underline{dilhNO_3} \underline{B}aSO_4$$

A.
$$Cu \underset{(s)}{\overset{4(aq)}{\leftarrow}} + 2SO^{2} \xrightarrow{} CuSO(s) + 2HO \\ + SO_{2(g)}^{2} \xrightarrow{} + SO_{2(g)}^{2}$$


C.
$$4H^{+}_{(aq)} + 2SO2 - 4(aq) + 2e^{-} SO^{2}_{-4(aq)} + 2H^{2}_{(1)}$$
$$+ SO_{2(a)}$$

- 36. The removal of rust from iron by treatment with tetraoxosulphate (V1) acid is based on the
 - A. hydrolysis of the iron
 - B. reaction of acid with base
 - C. oxidation of the rust
 - dehydration of the iron. D.
- 37. Which of the following additives could improve the quality of steel?
 - Silicon A.
- Sulphur and phosphorus
- C. Carbon.
- Chromium andnickel.
- 38. Sodium hydroxide is prepared commercially from sodium chloride solution by.
 - A. electrolysis using mercury as cathode
 - B. hydrolysis in steam using a catal.yst
 - C. electrolysis using iron as anode
 - D. treating sodium chloride with ammonia and carbon (1V) oxide.
- 39 A sample of a substance containing only C and H burns in excess O₂to yield 4.4 g of CO₂and 2.7 g of H₂O. The empirical formular of the substance is
 - A. CH₃
- C. CH, C_2H_5
 - (C=12, O=16, H=1)
- 40. An undesirable paraffin in the petroleum industry which is particularly prone to knocking is
 - A. iso-octane
 - B. n-heptane
 - C. iso-heptane
 - D. n-octane

The IUPAC nomenclature of the organic compund with the above structural formularis

3-ethyl-2, 5-dimethylhexane A.

- C. 3-ethyl-1, 1,4-trimethypentane
- D. 3-ethyl-2,5,5-trimethypentane
- 42. The reaction of an alkanol with an alkanoic acid in the presence of concentrated H₂SO₄ will produce an
 - Alkanal
 - B. Alkanonate
 - C. Alkanone
 - D. Alkayne.
- 43. The final product of the reaction of ethyne with hydrogen iodide is
 - CH___CHI A.
 - $\begin{array}{cccc} CH_2^3I & \underline{\hspace{1cm}} CH_2^21 \\ CH_3 & \underline{\hspace{1cm}} CI_3 \end{array}$ B.
 - C.
 - D CH₂=CHI

How many more isomers of the compound above can be obtained?

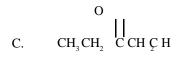
- A. 5
- 4
- C. 3

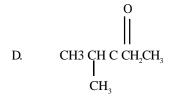
44.

- D 2
- 45. Synthesis detergents are preferred to soap for laundry using hard water because
 - detergent are water soluble while soap not A.
 - the calcium salts of detergent are water soluble B.
 - C. the magnesium salt of soap is soluble inhard
 - D. soap does not have a hydrocarbon terminal chain.
- 46. The synthetic rubber obtained by the polymerization of chlorobutadiene in the presence of sodium is called
 - Teflon A.
- Isoprene В.
- C. Polythene
- Neoprene D.
- 47. 25cm³ of 0.02 M KOH neutralized 0.03 g of a monobasic
 - В. 4-ethyl-2, 5-dimethylexane

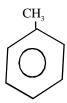
organic acid having the general formula $C_{\scriptscriptstyle n}H_{\scriptscriptstyle 2n+1}COOH.$ The molecular formula of the acid is

 $\|$

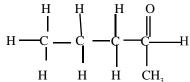

A. HCOOH B. C_2H_5COOH C. CH_3COOH D. C_3H_7COOH (C=12, H=1, 0=16)


When Fehling's solution is added to two isomeric carbonyl compounds X and Y with the molecular formula $C_5H_{10}O$, compound X gives a red precipitate while Y does not react. It can be inferred that X is

O


A .CH₃ C CH₂CH₂CH₃

B. CH₃CH₂CH₂CH₂CH



The compound above contains

- sp³ hybridized carbon atoms only A.
- B. sp³ hybridized carbon atoms only
- C. sp³ and sp hybridized carbon atoms
- D. sp³ and sp² hybridized carbon atoms.

The compound above is the product of the oxidation of

- A. 2 methylbutan 2 ol
- B. 2 methylbutan 1 o 1
- C. 2,3 dimenthylpropan 1 o1
- D. Pentan -2 o1

Chemistry 1998

9.

50.

- 1. The addition of water to calcium oxide leads to
- a physical change A.
 - B. a chemical change
 - C. the formation of mixture
 - D. an endothermic change.
- 2. A mixture of iron and sulphur can be separated by dissolving the mixturein
 - A. steam
 - B. dilute hydrochloric acid
 - C. dilute sodium hydroxide
 - D. benzene
- 3. 8.0 g of an element X reacted with an excess of copper (11) tetraoxosulphate (1V) solution to deposit 21.3 g of copper. The correct equation for the reaction is
 - $X_{(s)} + CuSO_{4(aq)} \longrightarrow Cu_{(s)} + XSO_{4(aq)}$ 8:
 - $X_{(s)} + 2CuSO_{4(aq)} \longrightarrow 2Cu_{(s)} + X(SO_4)_{(aq)}$
 - C. $2X_{(s)} + 2CuSO_{4(aq)} \longrightarrow Cu_{(s)} + X_{(s)} (SO)_{4_{(aq)}}$
 - $2X_{(s)} + 3CuSO_{4(aq)} \longrightarrow 3Cu_{(s)} + X_2(SO)_{3(aq)}$ D.
- $C_3H_8(g) + 5O_2(g) \longrightarrow 4H_2O(g) + 3CO_2(g)$ 4.

100cm³

From the equation abovem the volume of oxygen at s.t.p. required to burn 50cm3 of propane is

- 250cm³ C.
- В.
- 150cm³ D. 50cm³
- 5. 30cm³ of hydrogen was collected over water at 27°C and 780 mm Hg. If the vapour pressure of water at the temperature of the experiement was 10mm Hgm calcuale the volume of the gas at 760mm Hg and 7^{0} C.
 - 40.0cm^{3} A.
- В.
- 35.7cm³
- 28.4cm³ C.
- 25.2cm³ D.

- 6. A given amount of gas occupies 10.0 dm3 at 4 atm. and 273°C. The number of moles of the gas present is
 - $0.089 \, \text{mol}$ A.
 - B. 1.90 mol
 - C. 3.80 mol
 - 5.70 mol D.

[Molar volume of gas at s.t.p.= 22.4 dm³]

- 7. If sulphur oxide and methane are simultaneously at the opposite ends of narrow tube, the rates of diffusion R and R will be in the ratio A. 4:1 B. $\frac{1}{2}$ 4:1
 - C. 1:2
- D. 1:4

[S=32, O= 16, C=12, H=1]

- A solid begins to melt when A. constituent particles acquire a greater kinetic 8.
 - B. energy of vibration of particles of the solid is less than the intermolecular forces
 - C. Constituent particles acquire energy of the above the average kinetic energy
 - D. energy of vibration of particles of the solid equals the intermolecular forces.

The diagram above represents an atom that can combine

	with o	chlorine to form a convalent b	aond		17.	90.0 g of MgCI ₂ was placed in 50.0cm ³ of water to give a saturated solution at 298 K. If the solubility of the salt				
	В.	an electroval							perature, what	
	В. С.	a hydrogen b							solve at the g	
	D.	a nydrogen o					erature?	icit unuis:	sorve at the g	given
	D.	a co-ordinate	Dona			A.	52.0g	В.	58.5 g	
10.	Whic	h of the follo	wing elec	etron configurations		C.	85.5 g	D.	88.5 g	
10.	Which of the following electron configurations indicates an atom with the highest ionization energy?					C.	05.5 g		= 24,CI=35.5]	
	A.	2, 8, 7	В.	2, 8, 8, 1						
	C.	2, 8, 8, 2	D.	2, 8, 8, 7	18.	Soap		-	olloid in which a	
						A.	Liquid is di			
11.	The li	nes observe in th	e simple h	ydrogen spectrum are		В.	Solid isdisp	ersed in liqu	id	
	due to	emission of				C.	Gas is dispersed inliquid			
	A. electron from the atom					D.	Liquid isdis	persed in lic	լuid.	
	B.	energy by pro	oton transi	tion						
	C.	energy by ele	ectron trans	sition	19.				nixing 100cm ³ of	
	D.	neutrons from	n theatom			M HO NaOI		h 100cm ³ o	f a 0.2 M soluti	ion of

12	If an element X of atomic number Z and mass number Y
	is irradiated by an intense concentration of neutrons
	the relevant nuclear equation is

$$A_{\cdot_x} \qquad \ \ _{_y}X+_{\underset{0}{\downarrow}} n \quad \underset{_{Z+1}}{\longrightarrow} \quad \underset{_{Z+1}}{\longrightarrow} X$$

B.
$${}^{Y}_{Z}X + 1_{o} n \longrightarrow {}^{Y+1}_{Z} X$$

C.
$$z \times X + \frac{1}{0} n \xrightarrow{Y} X + \frac{1}{2+1} X$$

$$D. \xrightarrow{X + 1 n} X \xrightarrow{Y+1} X$$

- 13. The property used in obtaining oxygen and nitrogen industrially from air is the
 - boiling point A.
 - B. density
 - rate of diffusion C.
 - D. solubility
- 14. Excess phosphorus was burnt in gas jar and the residual gas passed successively over concentrated KOH solution and concentrated H₂SO₄ before being collected in a flask. The gases collectedare
 - carbon (1V) oxide nitrogen and the rare gases
 - B. nitrogen (1V) oxide and the rare gases
 - C. nitrogen and the rare gases
 - carbon (1V) oxide nitrogen (1V) oxide and the D. rare gases.
- 15. Potassium tetraoxomanganate (v11) is often added to impure water to
 - reduce organic impurities A.
 - B. reduce inorganic impurities
 - C. destroy bacteria and algae
 - D. remove permanent hardness.
- 16. The soil around a batterymanufacturing factory is likely to contain a high concentration of
 - A.
- $Pb^{2+}salts \\$
- Ca^{2+} salts B. Mg^{2+} salts D. C.
 - ${\rm AI}^{3+}$ salts.

- A. 1.3
- 7.0 B.
- C. 9.7
- D. 12.7
- 20. In the conductance of aqueous potassium tetraoxosulphate (IV) solution, the current carriers are

the

- A. ions B. electrons
- C. hydrated ions D. hydrated electrons
- What volume of 0.1 mol dm⁻³ solution of 21. tetraoxosulphate (1V) acid would be needed to dissolve 2.86 g of sodium trioxocarbonate (1V) decahydrate crystals?
 - $20\,\mathrm{cm}^3$ A.
- C. $80\,\mathrm{cm}^3$
- $100\,\mathrm{cm}^3$ D.
- [H=1, C=12, 0= 16,
- S = 32, Na = 23
- 22. 1.2 of electricity are passed through electrolytic cells containing Na⁺, Cu²⁺ and AI³⁺ in series. How many moles of each metal would be formed at the cathode of each cell?
 - A. 0.6 mole of Na, 1.2 moles of Cu and 1.2 moles
 - B. 1.2 moles of Na, 0.6 mole of Cu and 0.4 mole of
 - C. 1.3 mmoles of Na, 2.4 moles of Cu and 2.4 moles
 - D. 1.2 moles of Na, 2.4 moles of Cu and 3.6 moles of AI
- 23. What mass of gold is deposited during the electrolysis of gold (111) tetraoxosulphate (V1) when a current of 15 A is passed for 193 seconds?
 - 1.97 g A.
- 3.94g
- C. 5.91 g
- D. 19.70g
- $[Au = 97, F=965000C \text{ mol}^{-1}]$

24.
$$Fe_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Fe^{2+}_{(aq)} + Cu_{(s)}$$

From the reaction above it can be inferred that

- Fe is the oxidizing agent A.
- Fe is reduced В.
- Cu²⁺ loses electrons C.
- Cu²⁺ is the oxidizing agent. D.

25.	2FeCI2(s) + CI	\rightarrow 2FeCI
۷.).	21 CC12(8) ± CL	/ 417501

The reducing agent in the reaction above is

26. The reaction that is accompanied by a decrease in entropy when carried out constant temperature is

A.
$$N_2O_{4(g)} \longrightarrow NO_3$$

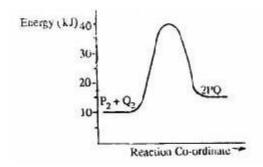
B.
$$N_2 + 3H \rightleftharpoons 2NH$$

A.
$$N_2O_{4g} \longleftrightarrow NO_2$$

B. $N_2 + 3H \longleftrightarrow 2NH_3$
C. $CaCO_3 \longleftrightarrow CaO + CO_2$

D.
$$2N_2H_4 \longrightarrow 3N_2 + 4H_2O$$

27. 32g of anhydrous copper 11 tetraoxosulphate (1V) dissolved in 1 dm3 of water generated 13.0kJ of heat. The heat of solution is


In the electrochemical series above the strongest reducing agent is

$$Cu_{(s)}$$
 $Zn_{(s)}$

$$Cd_{(s)}$$

D.
$$Mg_{(s)}^{(s)}$$

29.

In the diagram above, the activation energy for the backward reaction is

A.
$$+5 \,\mathrm{kJ}$$

30.

$$_{2X_{(g)}} + Y_{_{(g)}} \quad \Longrightarrow \quad \ Z_{_{(g)}}$$

In the equation above the rate of formation of Z is found to be independent of the concentration of Y and to quadruple when rate equation for the reaction is

A
$$R=k[X][Y]$$

$$B \qquad R = k[X]^2[Y]$$

C.
$$R = k[X]^2[Y]^2$$

D.
$$R = k[X]^2[Y]^0$$

31.

$$2CI_{2(g)} + 2HO_{2(g)} \longleftrightarrow 4HCI_{(g)} + O_{2(g)} \quad H^{o} = +115kJ \text{ mol}^{-1}$$

In the above equilibrium reaction a decrease in temperature will.

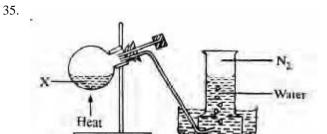
32.
$$3\text{CuO}_{(s)} + 2\text{NH}_{3(g)} \longrightarrow 3\text{Cu}_{(s)} + 3\text{H}_2\text{O}_{(1)} + \text{N}_{2(g)}$$

(i) $2\text{NH}_{3(s)} + 3\text{CI}_{2(g)} \xrightarrow{\text{6D}} \text{CI}_{(s)} + \text{N}_{(1)} + \text{H}_2\text{O}$

(i)
$$2NH_{3(s)} + 3CI_{2(g)} OHCI_{(s)} + N_{(1)} + H_2O$$

(ii) $4NH_{3(s)} + 3CI_{2(g)} OH_2O_{(1)} + 2N_{2(g)} + HCI$

The reactions represented by the equations above demonstrate the


- A. basic properties of ammonia
- B. acidicproperties of ammonia
- C. reducing properties of ammonia
- D. oxidizing properties of ammonia.

33. A gas that trun a filter paper previously soaked in lead ethanoate solution black is

- A. hydrogen chloride
- B. hydrogen sulphide
- C. sulphur (1V) oxide
- sulphur (VI) oxide. D.
- 34. A solution containing chloride gives a white precipitate with silver trioxonirate (V) solution.

The precipitate will be insoluble in dilute

- HNO but solublein ammonia solution A.
- O³and in ammonia solution I but soluble in ammonia solution <u>B</u>:
- D. HCI and in ammonia solution.

In the experiment above, X could be a solution of

- Sodium, trioxonirate (V) and ammonium A. chloride
- B. Sodium trioxonirate (111) and ammonium
- C. lead (11) trioxonirate (V) and copper turnings
- D. potassium, trioxonirate (V) and copper turnings.
- 36. The oxide that remains unchanged when heated in

hydrogen is A CuO

$$Fe_2O_3$$

C PbO₂

37. Whichof thefollowingisobservedwhenasolution of Iron(111) chlorideismixedwithasolution of sodium hvdroxide?

Α calcium B. aluminium

ZnO

C. iron D. zinc

39. Acommoncharacteristicsharedbyironandaluminum is that both

- Α are extracted by reduction methods
- В formonlybasicoxides
- C showoxidationstatesof+2and+3
- formsolublehydroxides. D.

40	-			o pure metals bacause	46	How many structural isomers can be drawn for the non-						
	A.	metals are tooh				cyclic alkanol with molecular formula $C_4H_{10}O$						
	B.	metals are duct					A.	1	B.	2		
	C.			mproved in alloys			C.	3	D.	4		
	D.	alloys are a mix	ture of m	etals.	-	0		1 1	ce			
					47.						evolved which	
											er and a oily	
		OH									ution is also	
		_						products			e	
41	CH ₃ CF	H_2 CHCH(CH $_3$) $_2$				Α.		on (1V) oz		•		
						B.		on (11) ox				
				e above compound is		C.		ogen gas				
	A.	4-methylpentar				D.	hydro	ogen gas	and alkai	ne		
	B.	2-methylpentan										
	C.	3- methylpenta			48	An ex		f aromatic	compou	nd is		
	D.	1,1-dimenthylb	utan-2-01			A.		I ₁₃ OH				
						B.	C_6H_{13}					
42	Dehydra	ation of CH ₃ CH ₂	CH2CH2	OHgives		C.	C_6H_5O	OH				
						D.	C_6H_{14}	4				
	A.	CH ₂ - CH - CH	- CH ₂ - C	CH ₃								
	B.	CH ₃ CH- CH -		\mathbf{H}_3	49						2- diol and	
	C.	H - C - C - CH	₂ - CH ₃					- dicarbox		by		
	D.	$CH_3C - C - CH_3$				A.		ion reacti				
						B. C.		ensation 1				
43	$nCH_2 = C$	$nCH_2 = CH_2O_2$ (initiator) ($CH_2CH_2CH_2$						nation rea				
	TD1 1			C		D.	subst	itution re	action.			
	The abo		resents th	e manufacture of	-	****						
	A.	rubber	B.	polythene	50					cerning t	the properties	
	C.	polystyrene	D.	butane				nd hexane				
44	0	1	1 4	.'		A.		undergo			on.	
44				ains 6 g of hydrogen.		B.		undergo		eaction		
				hydrocarbon is an.		C.		are solid				
	A.	alkanone	B.	alkane		D.	Both	can deco	lourize bi	ominewa	ater.	
	C.	alkene	D.	alkyne								
45	The pro	ducts obtained v	vhen a pu	re hydrocarbon is								
	burn in	excess oxygen a	re	•								
	A.	carbon and hyd										
	В.	carbon and wat	ter									
	C.	carbon (11) oxi	ide andhy	ydrogen								
	D.	carbon (1V) ox	ide and w	vater.								
				Chemis	trv	1000						
					uу	エフフン						
1.				lead (11) trioxonirate mixed. Assuming that	3.			following			efastest	
	(v) and	nyuro cinorioc a	cia weiel	macu. Assuming mat		wnen	passed t	hrough a	porous p	rug !		

5.

lead (11) chloride is completely insoluble, calculate the mass of lead (11) chloride that will be precipate.

2.78g B. 5.56g A. C. 8.34gD. 11.12g

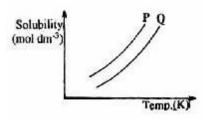
[Pb = 207, CI = 35.5, N = 14, O = 16]

2. 56.00cm3 of a gas at s.t.p weighed 0.11 g, What is the vapour density of the gas?

11.00 A. B. 22.00 44.00 C. 33.00 D. [Molar volume of a gas at s.t.p = 22.4 dm3]

Propane A. B. Oxygen C. Methane D. Ammonia

[H=1, C=12, N=14, O=16]


Which of the following will have its mass increased 4. when heated in air?

A. Helium B. Magnesium C. Copper pyrites D. Glass

What is the temperature of a given mass of a gas initially O°C and 9 atm, if the pressure is reduced to 3

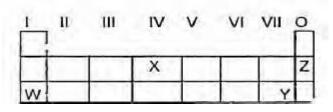
91 K A. C. 273K D.

6.

In the diagram above, the mixture of the two solid P and Q can be separated by

- distillation A.
- B. fractional distillation
- C. crystallization
- D. fractional crystallization.
- 7. $Mg(s) + 2HCl(aq) \longrightarrow MgCl2(aq) + H2(g)$. From the equation above, the mass of magnesium required to react with 250cm3 of .5 M HCl is
 - $0.3\,\mathrm{g}$ A.
- $1.5\,\mathrm{g}$
- C. $2.4\,\mathrm{g}$
- 3.0g
- [M = 27, Cl = 35.5]

182K

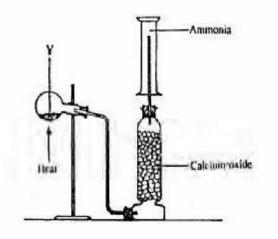

819K

- 8. A gaseous metallic chloride MClx consist od 20.22% of M by mass. The formula of the chloride is
 - MCl A. C. MCl,
- B. MCl,
- M,Cl D.
- [M = 27, Cl = 35.5]
- 9. In which of the following are water molecules in the most disorderlyarrangement?
 - Ice at -10° C A.
- B. Ice at O°C
- C. Water at 100°C D. Steam at 100°C
- In order to remove one electron from 3s-orbital of 10. gaseous sodium atom, about 496 kJ mol-1 ofenergy is required. This energy is referred to as
 - A. electron affinity
- B. ionization energy
- C. activation energy
- D. electronegativity
- Nitrogen obtained from the liquefaction of air has a 11. higher density than that obtained from nitrogen containing compounds because the former contains
 - Water vapour Α
- B. Oxygen
- C. Carbon (1V) oxide
- D. Rare gases

Use the table below to answer question 13 and 14.

- 12. The method that can be used to convert hard water to soft water is
 - Chlorination
 - B Passage over activated charcoal
 - C. the use of an ion exchange resin
 - D. aeration

Use the table below to answer question 13 and 14



- 13. The element that is likely to participate in covalent rather than ionic bonding is
 - Z A. C. X
- B.
- Y W D.
- 14. The least reactive elements is
 - W
- B.
- C. Y
- X \mathbf{Z} D.
- ls²2s²2p⁶3s²3p⁶3d⁷4s². An element with theelectron 15. configuration above is a
 - A. non-metal
 - B. metal
 - C. transition element
 - D. group two element
- Given that electronegativity increases across a period 16. and decreases down a group in the periodic table, in which of the following compounds will the molecules be held together by the strongest hydrogen bond?
 - $HF_{(g)}$ A.
- NH_(g)
- C. CH4(9)
- $HCl_{(g)}$ D.
- 17. 0.25 mole of hydrogen chloride was dissolved in distilled water and the volume made up to 0.50dm3. If 15.00cm3 of the solution requires 12.50 cm3 of aqueous sodium trioxocarbonate (1V0 for neutralization, calculate the concentration of the alkaline solution.
 - 0.30 moldm⁻³ B. 0.40 moldm⁻³ A.
 - $0.50\,mol\,dm^{-3}$ C.
- 0.60 moldm⁻³ D.
- 18. The correct order of increasing oxidation number of the transition metal ions for the compounds K Cr O, V O and KmnO is
 - $V_2O_5 < K_2Cr_2O_7$, $< KMnO_4$ A.
 - B. $K_2Cr_2O_7$ < $KMnO_4$ < V_2O_5
 - $KMnO_4 < K_2Cr_2O_7, < V_2O_5$ C.
 - $KMnO_4 < <V_2O_5 < K_2Cr_2O_7$ D.
- 19. The set of pollutants that is most likely to be produced when petrol is accidentally spilled on plastic materials and ignited is
 - A. CO, CO, and SO,
 - CO, HCl and SO, B.
 - C. CO, CO, and HCl
 - D. SO₂, CO₂ and HCl
- 20. What is observed when aqueous solution of each of tetraoxosulphate(V1) acid, potassium trioxides (V) and potassium iodineare mixed together?
 - white precipitate isformed A.
 - a green precipitate is formed B.
 - C. The mixture remains colourless
 - D. Themixture turns reddish-brown.

21.

From the diagram above, the mass of crystals

	deposited when 1 dm3 of a saturated solution of NaCl is cooled from 80°C to 60°C is A. 117.00g B. 58.50g C. 11.70g D. 5.85g [Na = 23, Cl = 35.5]	29.	When a current 1 was passed through an electrolyte solution for 40 minutes, a mass Xg of a univalent metal was deposited at the cathode. What mass of the metal will be deposited when a current 21 is passed through the solution for 10 minutes? A. x/4 g B. x/2 g			
22.	The solution with the lowest pH value is A. 5 ml of m/n HCl B. 10 ml of m/n HCl C. 15 ml of m/n HCl D. 20 ml of m/n HCl	30.	C. $2Xg$ D. $4Xg$ $RS_{(aq)} + HF_{(a\overline{q})} \rightarrow RF_{(s)} + HS_{(aq)} \triangle H = -65.7 \text{ kJ mol}^1$. From the equation above, it can be deduced that. A. the heat content of the reactants is lower than that of the reactants ucts			
23.	The solubility product of $Cu(IO_3)_2$ is 1.08 x 10-7. Assuming that neither ions react appreciably with water to form H ⁺ and OH ⁻ , what is the solubility of this salt? A. $2.7 \times 10^{-8} \text{ mol dm}^{-3}$ B. $9.0 \times 10^{-8} \text{ mol dm}^{-3}$ C. $3.0 \times 10^{-8} \text{ mol dm}^{-3}$	31.	 B. the heat content of the reactants is higher than that of the products C. the reaction is slow D. a large amount of heat is absorbed. Which of the following statements is true of the electrochemical series? 			
24.	 D. 9.0 x 10⁻⁸ mol dm⁻³ The entropy and enthalpy of a system are a measure of A. degree of disorderliness and heat content respectively B. heat content and degree of disorderliness respectively C. heat content of a system only 		 A. Electropositivity of metals increase down the series B. Electropositivity of non-metals decrease down the series C. Electronegativity of non-metals increase down the series D. Electropositivity of metal decreases down the series 			
25.	D. degree of disorderliness only. $2SO2(g) + O_2(g) \longleftrightarrow 2NO^2(g)$. In the chemical reaction above, the substance that will increase the rate of production of sulphur (V1) oxide is	32.	The gas that will form a white precipitate with acidified silver trioxonirate (V) is A. NH_3 B. SO_2 C. CO_2 D. HCI			
26.	 A. manganese (1V)oxide B. finely dividedion C. vanadium (V0oxide D. nickel N₂O₄(g) → 2NO₂g). Increases in total pressure of 	33.	Chlorine bromine and iodine resemble one another in that they A. dissolve in alkalis B. react violentlywith hydrogen without heating C. are liquids			
	the equilibrium reaction above will A. Produce more of NO ₂ (g) in the mixture B. Convert all of N ₂ O ₄ (g) to NO ₂ (g) A. Have no effect on the concentrations of N ₂ O ₄ (g) and N ₂ O ₄ (g) B. Produce more odf N ₂ O ₄ g) in th mixture	34.	 D. displace one another from solutions of their salts. The salt that reacts with dilute hydrochloric which decolourizes acidified purple smelling gas which decolourizes acidified purple potassium tetraoxomanganate(V11) solution is 			
27.	What quantity of electricity will liberate 0.125 mole of oxygen molecules during the electrolysis of dilute sodium chloride solution? A. 24 125 coulombs B. 48 250 coulombs C. 72 375 coulombs D. 96 500 coulombs [F=96500C mol ⁻¹]	35.	A. Na ₂ SO ₄ B. Na ₂ SO ₃ C. Na ₂ S D. Na ₂ CO ₃ A pair of compounds that can be used to generate a gas which physiological effect on human beings is A. sodium trioxonirate(V) and calcium chloride B. sodium dioxonitrate (111) and ammonium chloride C. sodium trioxonirate(V) an ammonium chloride			
28.	$X+Y \longrightarrow Z$. The rate equation for the chemical reaction above is $\Delta[X]=[X]^2[Y]$ The overall order of the reaction is A. 0 B. 1 C. 2 D. 3	36.	D. sodium dioxonitrate (111) and potassium chloride. Hydrogen is used in oxy-hydrogen flames for melting metals because it A. evolves a lot of heat when burnt B. combines explosively withoxygen C. is a very light gas D. is a rocket fuel.			

In the diagram above Y is mixture of

- Calcium hydroxide and ammonium chloride A.
- B. Calcium hydroxide and sodium chloride(V)
- C. Sodium chloride and ammonium trioxonirate(V)
- D. Sodium dioxonitrate(lll) and ammonium chloride.
- What properties of duralumin make it more useful than 38. its constituent metals?
 - A. it is heavy with a high melting point
 - B. it is malleable andhas high density
 - C. it is strong and light
 - D. it is hard and ductile
- The pair of metals in the reactivity series that are usually 39. extracted by the electrolysis of their ores is
 - A. Magnesium and zinc
 - B. Magnesium andcalcium
 - C. Copper and zinc
 - D. Lead and calcium
- 40. A metal that can be extracted from cassiterite is
 - calcium A.
- В. magnesium
- C. tin
- D. copper
- Which of the following metals is passive to 41. concentrated trioxonirate(V) acid?
 - A. iron

C.

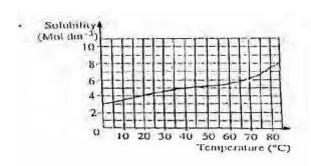
- B.
- copper
- tin D. zinc
- 42. The hydrocarbon the burns in air with a sooty flameis
 - C_6H_6 A.
- B.
- C_3H_6
- C. $C_{4}H_{10}$
- D. C_6H_6
- 43. 2-methylprop-1-ene is an isomerof
 - but-2-ene A.

 - B. pent-l-ene
 - C. 2-methylbut-ene
 - D. 2-methylbut-l-ene

- Which of the following is a solvent for perfumes? 44.
 - C.
- C_4H_6
- CH,COOH
- C,H,OH D.
- 45. When excess ethanol is heated to 145oC in the presence of concentrated H2SO4 the product is
 - A. ethyne
 - B. diethyl sulphate
 - C. diethyl ether
 - D. acetone
- 46. How many grammes of bromine will saturate 5.2 g of but-l-ene-3-yne?
 - A. 64.0g
- B. $48.0\,\mathrm{g}$
- C. 32.0g
- D. $16.0\,\mathrm{g}$
- [C = 12, H = 1, Br = 80]
- 47. Polyvinyl chloride is used to produced
 - bread
- pencils

C. ink

- D. pipes
- 48. An organic compound that does not undergo a reaction with both hydrogen cyanide and hydroxylamine can be an
 - A. alkenes
- В. alkanal
- C. alkanone
- D. Alkanoic acid
- 49. When two end alkyl groups of ethyl ethanoate are interchanged, the compound formed is known as
 - A. methylethanoate
 - B. ethyl propionate
 - C. methylpronoste
 - D. propel ethanoate.


50.

- III
 - Which of the compounds above would react to take up two molecules of bromine during bromination?
 - A. 1 only
 - B. 111 only
 - C. 1 and 11 only
 - D. 11 and 111 only

Chemistry 2000

1.		xture of iodine and ated by treatment w	_	r crystals can be			C.	Elements in the	_	-	
	_						ъ	number of elec			
	A.	water of filter of					D.			rties of the element	ts
	B.	carbon (1V) sul	-					tent to decrease	e across e	each period	
	C.	ethanoic acid to		-					2		
	D.	methanol to filte	er offio	line	10.		The o	electron configuration $1s^2 2s^2 2p^6 3s^2 3$	on of X^2	ion is	
							A.	$1s^2 2s^2 2p^6 3s^2 3$	$3p^{6}4s^{2}3d$	2	
2.	Sievii	ng is a technique us	ed to se	parate mixtures			B.	$1s^2 2s^2 2p^6 3s^2$	$3p^6 4s^2 3$	d^1	
		ining solid particles		F			C.	$1s^2 2s^2 2p^6 3s^2 3$	$3n^6$	-	
	A.	small sizes	B.	large sizes			D.	$1s^2 2s^2 2p^6 3s^2$	2p ⁶ 4p ²		
	C.	different sizes	D.	the same size			D .	18 28 2p 38 .	эр 4 р		
	C.	different sizes	D .	the same size							
_					11.			ch of the following			
3.		h of the compounds	s is com	posed of Al, Si, O			invol	ves the formation of	of new su	bstance?	
	and H	I?					A.	Metallic	B.	Covalent	
	A.	Epson salt	B.	Limestone			C.	Co-ordinate	D.	Electrovalent	
	C.	Clay	D.	Urea							
		•			12.		The 1	knowledge of half-l	life can b	e used to	
4.	50cm	³ of carbon (11) ovi	de was e	xploded with 150cm ³	12.		A.	create an eleme		e usea to	
т.		containing 20% ox									
		_	, ,	volume, which of			B.	detect an eleme			
		actants was in exce					C.	split an elemen			
		A. Carbon (11) oxide					D.	irradiate anelei	ment		
	В.	Carbon (1V) oxide							1.011		
	C.	Oxygen			13.		The	shape of CO ₂ ,H ₂ O a	ind CH r	espectivelyare	
	D.	Nitrogen					A.	bent linear and			
		· ·					В.	bent tetrahedra			
5.	Hown	many moles of HCl	will be r	equired to react with			C.	linear bent and			
		sium heptaoxodichi					D.	tetrahedral, line			
		s of chlorine?	Omate (v1) to produce 3			D.	tetraneurai, inii	ear and b	ent.	
			ъ	10							
	A.	14	B.	12	14.			distance between th			
	C.	11	D.	10			a chl	orine molecule is 0.	914 nm.	The atomic radius	of
							chlor	rine atom is			
6.	The ra	atio of the initial to	the fina	l pressure of a given			A.	0.097nm			
	mass	of gas is 1:1:5. Calc	ulate th	e final volume of the			B.	0.914nm			
	gas if	the initial volume v	was 300	cm3 at the same			C.	2.388nm			
	_	erature.					D.	2.388nm			
	Α.	$120 \mathrm{cm}^3$	B.	200cm^3							
	C.	450cm ³	D.	750cm ³	15.		The	noble gas, argon, is	used for		
	C.	150011	Δ.	7500111	15.						
7.	Thon	partial pressure of o	vvoon in	a comple of air is			A.	electric are wel	unig		
7.	-	-		-			B.	welding brass			
				is 780mmHg. What			C.	underwater we	lding		
		mole fraction ofox					D.	steal welding			
	A.	0.203	B.	0.579							
	C.	2.030	D.	5.790	16.		A sic	le effect of soft wat	ter is that	į.	
							A.	it gives offensive ta	aste		
8.	The f	undamental differei	nce betw	veen the three states			В. о	excess calcium spre	ecipitate		
	of ma	tter is the						it attacks lead conta		pipes	
	A.	shape of theirpa	rticles					it encourages the gr	-	•	
	B.	number of partic		each state			Σ	at encourages the gr	owen or	oucteria	
	C.	shape of the cor			17		Wate	mmalaaulaa aan ba	Landa	aamaaially, yyhan tha	
	D.	-			1 /			er molecules can be	nganus (especially when the	Эу
	D.	degree of move	memor	meir particles				onded to.	_		
^	****						A.	alkaline earthn	netals		
9.		h of the following t					В.	alkali metals			
		ct about the periodic					C.	transition meta			
	A.			riod have the same			D.	group V11elen	nents		
		number of valer	nce elect	trons							
	B.	The valence ele	ctrons o	f the elements in the	18.		The :	air pollutant unkno	wn in nat	ture is	
				ogressively across		A.		NO	В.	CO	
		the period	Γ-	J		C.		HCHO	D.	DDT	

- 19. 10dm³ of distilled water used to wash 2.0 g of a precipitate of AgCl. If the solubility product of AgCl is 2.0 x10⁻¹⁰ moldm⁻⁶, what quantity of silver was lost in the process?
 - $2.029 \, x \, 10^{-3} \, moldm^{-3}$ A.
 - $1.414 \times 10^{-3} \text{ mol dm}^{-3}$ В.
 - 2.029 x 10⁻⁵ mol dm⁻³ 1.414 x 10⁻⁵ mol dm⁻³ C.
 - D.
- 20. Hydration of ions in solution is associated with
 - A. absorption ofheat
 - B. reduction of heat
 - C. conduction of heat
 - D. liberation of heat
- 21.

The diagram above is the solubility curve of solute, X. Find the amount of X deposited when 500cm3 of solution of X is cooled from 60°C to 20°C

- 0.745 mole A. В.
- C. 2.375 moles D.
- 0.950 mole
- 4.750 moles.
- $HCl_{(aq)} + H_2Q$ \longleftrightarrow $H_3O^+_{(aq)} + Cl^-_{(aq)}$ 22. In the reaction above, Cl_(aq) is the
 - A. Conjugate acid
 - B. Acid
 - C. Conjugate base
 - D. Base.
- 23. In which order are the following salts sensitive to light?
 - A. Agl >AgCl >AgBr
 - В. AgCl>Agl>AgBr
 - C. AgBr > AgCl > AgI
 - D. AgCl>AgBr>AgI
- Thee pOH of a solution of 0.25 mol dm⁻³ of 24. hydrochloric acid is
 - 12.40 A.
- В.
- C. 14.40
- D. 14.60

13.40

25.

- A.
- B.
- C.
- D.
- $\frac{1}{2}Zn^{2+}_{(aq)} + e^{-} \longrightarrow \frac{1}{2}Zn_{(s)}$ 26.

In the reaction above, calculate the quantity of

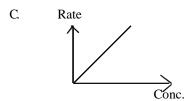
electricity required to discharge zinc

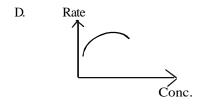
 $0.965 \times 10^{4} \text{C}$ A.

C.

- $4.820 \times 10^{4} \text{C}$
- $9.650 \times 10^{4} \text{C}$ D.
 - $48.200 \times 10^{4} \text{C}$

$$[F = 96 500 \text{ C mol}^{-1}]$$

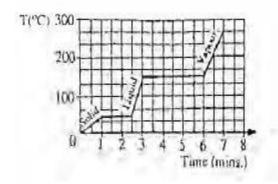

- 27. Given that M is the mass of substance deposited in an electrolysis and Q the quantity of electricity consumed, then Faraday's law can be written as
 - A.
 - B.
 - C.
 - E. M = OZ
- 28 0.46g of ethanol when burned raised the temperature of 50 g water by 14.3 K. Calculate the heat of combustion of ethanol.
 - $+3\,000\,\mathrm{kJ}\,\mathrm{mol}^{-1}$ A.
 - B. +300kJ mol⁻¹
 - C. -300kJ mol⁻¹
 - -3 000 kJ mol⁻¹ D.
 - [C = 12, O = 16, H = 1]


Specific heat capacity of water = $4.2 \text{ jg}^{-1}\text{K}^{-1}$

- 29. Powdered marble reacts with hydrochloric acid solution than the granular form because the powdered form has
 - A. more molecules
 - B. more atoms
 - C. large surface are
 - D. relatively largemass
- 30. The graph that describes a zero order reaction is

B. Rate Conc.

31.	A.	increase the q		N_2		C. I	lron	E.	copper	r.
		ncrease the yield								
		ecrease the yield			42.	The le	east easily ox	idized	of the m	netals below is
	D. d	ecrease the quant	ity of O ₂			A.	Ca		В.	Na
						C.	Zn		D.	Al
32.		•		species involved in						
	the eq	uilibrium constar			43.	The re	epeating unit	in natı	ıral rubl	per is
	A.	gaseous and s	olid specie	es .		A.	alkynes			
	B.	liquid and sol	id species			B.	isoprene			
	C.	solid and diss	olved spec	eies		C.	n-propane	e		
	D.	gaseous and				D.	neoprene			
33.	A phe	nomenon where	an elemen	t exists in different	44.	Unsat	turated organ	nic cor	npound	s are identified by
	forms	in the same phys	sical state	is known as			ourization of		•	·
	A.	isomerism	B.	amorphism		A.	silver	bron	nide	and potassium
	C.	allotropy	D.	isotropy			tetraoxon	nangar	nate(v11	
						B.				dified potassium
34.	The si	ibstance often use	d for vulca	nization of rubber is		ъ.				l) solution
, 	A.	chlorine	a for value	anzadon of raccer is		C.		_		and bromine water
	В.	hydrogen per	ovida			D.				
	В. С.		DATUE			υ.				caline potassium
		sulphur	(\$71) .	• 1			tetraoxon	nangar	iate (v i	1) solution.
	D.	tetraoxosulph	ate (VI) a	eid					_	
					45.					e extraction of a water
35.	_			global warming is		molec	cule form two			
	A.	CO_2	В.	SO_3		A.	less acid	and a l	ower tei	mperature
	C.	CH_4	D.	H_2		B.	excess ac	id and	a lower	temperature
						C.	excess ac	id and	a highe	r temperature
6.	The r	efreshing and cha	racteristic	s taste of soda water		D.				emperature.
		_		alt of the presence in					U	1
	them			1	46.	The c	hlorinated al	kane o	ften use	d industrially
	A.	carbon(1V)oxi	de				move grease			a maasuranj
	В.	carbon(11) ox				A.	tetrachlor		ane	
	C.	soda	iac			В.	chlorome		anc	
	D.					В. С.	trichloror		_	
	D.	glucose								
7	۸ ٤	C	£			D.	dichloron	netnan	e.	
37.				ping poisonous gases	477	TO I			•.•	
		urification of nob	-		47.		eaction of car			-
	A.	wood charcoa				A.	ethyne			ethane
	B.	animal charco	al			C.	ethane		D.	Ethanal
	C.	carbon fibres								
	D.	carbon black.					O			
38.	Synth	esic gas is a mixt	are of		48.	C	CH ₃ -CH ₂ -CC	CH ₂ C	H_3	
	A.	CH_4 and H_2O				The c	ompoundab	ove is	an	
	B.	CH ₄ and H ₂				A.	ether		B.	ester
	C.	CO_2^4 and H_2^2				C.	alkanal		D.	alkanol
	D.	CO and H ₂								
••	_	-			49.					by the oxidation of
89.		sium vapour burn	s with a			A.	primary a	lkanol	S	
	A.	blue-flame				B.	secondary	y alkar	nols	
	B.	brick-red flame	2			C.	tertiary al	kanols	3	
	C.	violet flame				D.	alkanoic a			
	D.	golden-yellow	flame							
					50.	Sucro	se is made u	p to		
40.				per andsilver in their		A.	glucose a	and glu	icose	
	usage	as coinage metal				B.	glucose a	and fru	ctose	
	A.	have high met				C.	fructose a	and fru	ictose	
	B.	are not easily	oxidized			D.	galactose			
	C.	are easily oxid					5	2		
	D.	are not easily								
41.		ite is an ore of								
		Zinc B.	Lead							
	_									


Chemistry 2001

1. 25cm³ of a gas X contains Z molecules at 15°C and 75 mm Hg. How many molecules will 25cm³ of another gas Y contain at the same temperature and pressure?

A, 2Y, B. 2Z. C. Y, D. Z.

2. What mass of water is produced when 8.0g of hydrogen reacts with excess oxygen? A. 72.0g, B. 36.0g, C. 16.0g, D. 8.0g

Use the graph below to answer questions 3 and 4

3. How long does it take all the solid to melt?

> 6.0mins, A.

B. 3.0mins,

C. 2.5mins,

D. 1.0min

If the gas is cooled, at what temperature will it 4. start to condense?

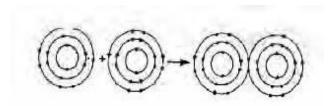
> A. 175°C,

B. 250°C,

C. 125°C. D. 150°C

Four elements W,X,Y and Z have atomic numbers 5. 2,6,16 and 20 respectively. Which of these elements is ameal?

A.


Z, B.

C.

W.

X.

D. Y

The diagram above represents the formation of

a metallic bond, B. a covalent bond, A.

C. an electrovalent bond.

D a coordinate covalent bond with relative abundance of 10%. The value of m is

14. A.

B. 12,

C. 18. D. 16

8. Cancerous growth are cured by exposure to

> A. x-ravs.

B. betta-rays,

C. alpha-rays, D. gamma-rays

9. Which of the following statement is correct about the average kinetic energy of the molecules of agas?

A. it increases with increase in pressure,

B. it increases with increase in temperature,

C. It increases with increase in volume,

D. It increases at constant pressure.

10. Millikan's contribution to the development of atomic theory is the determination of

A. positive rays,

B. cathode rays,

C. charge to mass ratio,

D. charge on electron.

A particle that contains 9 protons, 10 neutrons and 10 11. electrons is

A. positive ion

B.neutral atom of a metal

neutral atom of a non-metal

negative ion.

12. An oxide XO₂ has a vapour density of 32. What is the atomic massof X?

> A. 20

B. 32

C. 14

12 D.

13. The chemical used for coagulation in water purification is

A. copper tetraoxosulphate (VI)

sodium tetraoxosulphate (VI)

aluminium tetraoxosulphate(VI)

calcium tetraoxosulphate(VI)

Environment pollution is worsened by the release 14. from automobile exhausts of

A. heavy metals

B. water vapour

smoke

D. steam

15. Phosphorus is stored under water to prevent it from dehydrating

A. smelling

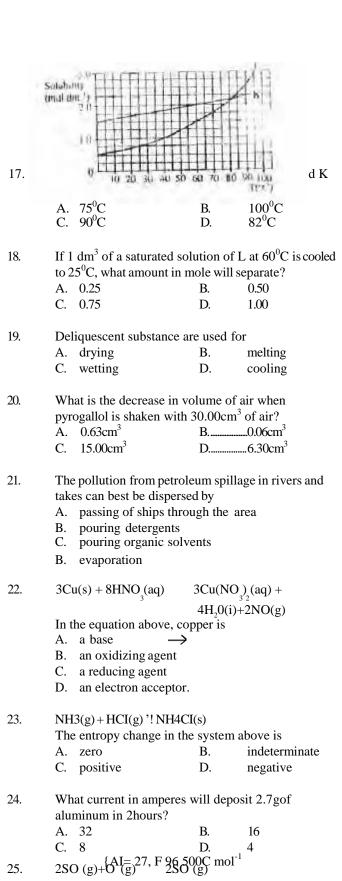
В.

becoming inert

C. catching fire

D.

16. Pure solvents are obtained by


A. evaporation

B. extraction

condensation

D.

distillation

The equilibrium constant for the reaction above is

A. increasing the pressure of the system increasing the temperature of the system increasing the surface area of the vessel

the addition of a catalyst to the system

increased by

C.

26.

27.

28.

conductivity A. decreases

C(s) + 2S(g)

energy

rises?

C. reduces to zero

	A. A lower proportion of the molecules has the							
	necessary minimum energy to react							
	B. The bonds in the reacting molecules are more							
	readily broken							
	C. The collision frequency of the molecules							
	increases							
	D. The molecular collisions become more violent.							
29.	In which of the following reaction have the oxidation number of nitrogen increased? A. $2NO(g) + Br_2(l)$ $2NOBr(1)$ B. $FeSO4 (aq) + NO(g)$ $Fe(NO)SO_4(s)$ C. $2NO(g) + CI_2(g)$ $2NOCI(l)$ D. $2NO(g) + O_2(g) 2NO_2(g)$							
	$\xrightarrow{2} \qquad \xrightarrow{2} \qquad \xrightarrow{3} \qquad $							
30.	P _(g) + Q _(g) 3R _(s) + S _(g) which of the following will increase the yield of R? A. Removing some S B. Using a larger closed vessel C. Adding a positive catalyst D. Increasing the temperature							
31	Ethanoic acid is							
31								
	A. tribasic B. unionizeable							
	C. dibasic D. monobasic							
32.	A metal M displaces zinc from zinc chloride solution. This shows that A. M is more electronegative than zinc B. Zinc is above hydrogen in the series C. Electron flow from zinc to M D. M is more electropositive that zinc							
33.	In which of the following reactions does reduction take place?							
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	C. Fe - e—————Fe							
	D. $\operatorname{Cr} - 2e^{-}$ Cr^{2+}							
24	Will III.							
34.	When H is negative, a reaction is said to be							
	A. Endothermic B. Exothermic							
	C. Rerverisble D. Ionic.							

As the concentration of an electrolyte reduces, the

 CS_{2} The chemical equation above implies that

A. 89kJ of energy is absorbed

D. 89 kJ of energy is released

B.

D.

each of carson and aulphur has 89 kJ of energy

C. both carbon and sulphur contribute 89kJ of

Which of the following best explains the increase in

the rate of a chemical reaction as the temperature

A. A lower proportion of the molecules has the

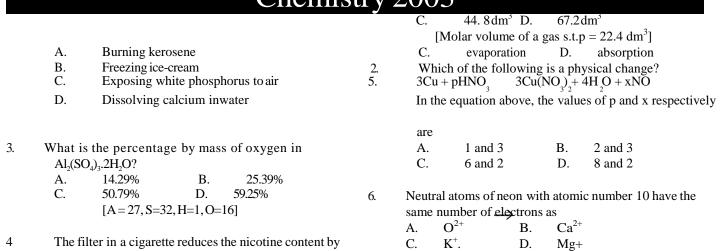
H = 89kJmol

increases

is unaffected.

	ethyn	e?				functi	on as	>			
	A. C.		B. D.	sp3 sp2		A. C.	a reducing age	ent E	3. a catalyst an oxidizing agent		
36.	Protei	n in acid solution	undergo		43.		g the vulcanizatio	n of rubbe	er sulphur is added to		
	A.	Polymorphism				A.					
	B.	Hydrolysis				B. break down rubber polymer					
	C.	Fermentation				C.	act as a cataly				
	D.	Substitution				D.	bind rubber m	olecules t	ogether		
37.	Forme	entation is the			44.	When sodium reacts with water, the resulting solution					
37.	A.		of carbo	hydrate to glucose		A.	Alkaline	В.	Acidic		
	B.			to carbohydrate		C.	Neutral	D.	Weakly acidic.		
	C.			lcohol in the presence	45.	The g	eneral formula for	the alkan	als is		
	C.	of yeast	igai to a	iconorm the presence		A.	$RCOOR^1$	B.	$R_{_{1}}CO$		
	D.	-	cohol to	sugar in the presence		C.	RCHO	D.	ROH		
	Σ.	of yeast.		sagar in the presence	46.	Which flame		metals b	urns with a brick red		
38.	Cataly	ytic hydrogenation	of benze	ene produces		A.	Ca	B.	Na		
	Α.	Cyclohexene	B.	Oil		C.	Mg	D.	Pb		
	C.	Margarine	D.	Cyclohexane.		C.	1115	Δ.	10		
		J		Ž	47.	The o	gas that can best b	e collecte	d by downward		
39.	A cha	racteristics reactio	n of the	compounds with the	.,.		acement of air is	• • • • • • • • • • • • • • • • • • • •	a of ao minara		
		al formula $C_n 2_n$ is		-		A.	Chlorine	B.	Sulphur (IV) oxide		
	A.	Substitution	B.	Esterification		C.	Carbon (IV) ox		Ammonia.		
	C.	Decarboxylation	n D.	Polymerization	40						
					48.		ydric alkanol is	D	C1 1		
40.				ter and the resulting		A.	Phenol	B.	Glycol		
				products formed are		C.	Glycerol	D.	Ethanol		
	A.	Chlorine gas ar			49.	The main impurity in iron ore during the extraction of					
	B.	Hydrochloric a				iron is	S				
	C.	Chlorine gas ar				A.	Calcium trioxo	silicate			
	D.	Oxygen and ox	ochlorat	e (1)acid		B.	Silicon (IV) ox				
41	Th	-:£:	41	hat and income in		C.	Sulphur (II) ox				
41.	_	air of organiccomp But – 1-ene and				D.	Carbon (IV) ox	ide.			
	A. B.			-ene							
	C.	Ethanol and pro		tetrachloromethane	50.		ning candle produ		rand		
	D.	Benzene and m				A.	carbon (IV) ox				
			•			B.	carbon (IV) ox	ıde			
42.	CHO		_	+ 11H O + H SO		C. D.	oxygen				
	12 22 (s) In the	reaction above, te	(s) traoxosu	2 (l) 2 4(aq)		<i>D</i> .	hydrogen.				
	III tile	reaction above, te	пиолови	inplicate (v 1) dela							
				\mathcal{O}_1 .	, ,	2000					
				Chemis	try	2002		nanoic ac	iu is regarded as its		
	B.	molecular form	ıla			A.	empirical formu				
	C.	structural formu	ıla			B.			s in thecolumn		

		Ch	zunsu y z						
	В. С.	molecular formula structural formula	1.	A. B.	empirical for dissolve in e	mula ach other in	the column		
	D.	general formula		C. D.	move at different speeds in the column react with the solvent react with each other.				
2.	Which	h of the following gases contains the least	number	D.	react with c	acii otiici.			
	of ato	ms at s.t.p?	4.	A compound contain 31.91% potassium, 28.93%					
	A.	7 moles ofargon		chlorine and the rest oxygen. What is the chem					
	B.	4 moles of chlorine			ıla of thecompo				
	C.	3 moles of ozone		A.	KClO	B.	KClO ₂		
	D.	1 mole of butane		C.	KClO ₃	D.	KClO ₄		
3. The chromatographic separation of ink is based on the ability of the components to			on the 5.		quantity of trich arge quantity o		· •		


probable boiling point of the resultant mixture is from. A. $60^{\circ}\text{C} - 78^{\circ}\text{C} \text{ B. } 69^{\circ}\text{C} - 70^{\circ}\text{C}$

	C.	70°C - 74°C	D.	82°C -8	4°C	15.	The boi as.	ling of	fat and aque	ous caus	tic soda is referred to
6.	The g	as that gives brow	n coloui	ration in br	rown ring		A. C.		ification onification	B. D.	hydrolysis esterification.
	A.	CO	B.	NO				•			
	C.	CO_2	D.	NO_2		16.	Ordin A.		ss is manufac ICO ₃	ctured fr B.	om silica, CaCO ₃ and K ₂ SO ₄
7.		h of the following a NaOH solution?	gives a pı	recipitate v	when treated		C.	K ₂ C		D.	Na ₂ CO ₃
	A.	NH ₄ Cl	B.	Na ₂ CO	D_3						
	C.	AlCl ₃	E.	CH ₃ C	OONa						
8.	of a ca	eaction of an alken atalyst is			he presence	17.			ОН		
	A. B.	a nucleophilic an addition rea						CH	I ₃ - C-CH ₂ -C	H_3	
	C.	a substitution							CH ₃		
	D.	an oxidative re					The nabove			dehydra	ation of the compound
9.		k sample was adde ed was passed into					A		Н 		
	and th	ne solution turned	green.		2 2 /			CH	I ₃ - C-CH ₂₋ Cl	H_3	
		ock sample contai SO ²⁻		SO_3^{2-}					CH		
	C.	NO^{3-}	D.	Cl ⁻			В.	CH	I ₃ - C= CH ₂ -C	Ή	
10.	progre	rmediate produc	to ethanc				Σ.		фH ₃	2-3	
	A.	oxodichromate (V methanal	1)18	В.	propanal						
	C.	ethanal		D.	butanal		C.	CH	I ₃ - CH-CH-	CH_{23}	
11.		CH ₃							CH_3		
		CH ₃ CH ₂ C-H					D.	СН	CH ₂ CH ₂ CH	\mathbf{I}_3	
		ОН						(CH ₂		
		ompound above is									
	A.	primary alkano				18.			of isomers fo		· ·
	В.	secondary alka					A. C.	2 4		В. D.	3
	C. D.	tertiary alkano glycol	IS				C.	4	II	D.	5
12 4	\ red nred	cipitate of copper	r (1) car	hide is fo	rmed when	19.			ese pairs are iles respectiv	•	tic and natural
12, 1		onium solution co					A.	Nyl			ne, creatine and
	A.	CH_3 - $C = C$ - CI					В.	Nyl	on and crea	ative, p	olyethylene and
	В. С.	CH_3 - CH_2 - C a CH_2 = CH - CH					C.		noglobin vethylene a	nd crea	tine, nylon and
	D.	CH ₃ CH ₂ CH ₂ CH						haei	noglobin		•
13.		nost import <u>an</u> t use			the		D.		emoglobin a vethylene	and nyle	on, creatine and
	A. B.	manufacture o				20			C 1	1	
	Б. С.	manufacture of		COHOI		20.		_			n catenate is
	D.	hydrogenation manufacture o		ia			A. C.	carb	ogen oon	B. D.	chlorine bromine
14.	Which o	of the following pol	lymers is	suitable for	r packaging						
	and el	lectrical insulation				21.	Ethanol	can ea	sily be prod	uced by	
	A.	Polyethene	B.	Polystyre			A.		illation of st		
	C.	Polyamide	D.	Polycarb	onate.		B.		lyst oxidatio		
							C.		ructive disti		of wood
							D.	fern	nentation of	starch.	

22.			ased when	dilute hydrochloric		C.	0.44 atmospher		
		eacts with				D.	0.55 atmospher	re	
	A.	Ag	В.	Au					
	C.	Cu	D.	Na	31.		H ₂ S is passed into plution turns	a solution	of iron (iii) chloride,
23.	Which	of the followin	g statemen	t is true of a proton?		A.	brown	B.	pale green
	A.	The mass of a				C.	colourless	D.	pale red.
	В.	The mass of a							1
	C.			840 times the mass of	32.	Which	h of the following e	anations s	shows that a reaction
	C.	-	proton is 1	540 times the mass of	32.		quilibrium?	quations	snows that a reaction
	-	an electron	0.1					C	
	D.			roton in a particular		A.		S	
				the nucleus is always		B.	G < 0		
		half the nucle	earmass.			C.	G = O		
						D.	G > O		
24.	¹⁴ C	X + B			33.	Cu S		SO	
	6 V in th	$X + B$ ne equation above ${}^{14} N$		to.		2 (s)	2(g) (s)	2(g)	on numbon of common
	A in un	ie equation abov	ve represer R	its. ₁₃ C		w nat in the	reaction above?	e oxidano	on number ofcopper
	Α.	12 7 C	ъ.	12 6			\rightharpoonup		
	C.	12 C	D.	¹² ₅ B		A.	$\Delta 0$ to+2		
						В.	$\Delta to+1$		
25.	A gas-	X diffuses twice	e as fast as	gas Y under the same		C.	$\overline{+1}$ to 0		
	conditi	ion. If the relati	ive molecu	lar mass of X is 28,		D.	+2 t o+ }		
	calcula	ate the relative m	nolecular m	ass of Y					
	A.	14	B.	56	34.				
	C.	112	D. 120						
26.	Which	of the following	chlorides v	would exhibit the least					
		haracter?	,						
	A.	LiCl	B.	$MgCl_2$					
	C.	CaCl ₂	D.	AlCl ₃					
	C.	CaC ₁₂	D.	Aici ₃		Press	nire 1		
27.	A fivo	1 mass of gas had	e o volumo	of 92 cm ³ at 3°C. What		17 E TO 1			P
21.				the pressure remains		(mm)	(80	- 12-11	
	consta		1 10 C 11	ine pressure remains				7	Q
	A.	552.0 cm ³		$B_{}97.0 \text{cm}^3$					D
	C.	87.3 cm ³		D 15.3 cm ³				1	R s the
	C.	87.30111		D13.3cili					on of
							S-	Tim	e (mins)
20	Thoma		otumo oomba	on(1V) oxide to the				7.77	()
28.			eturn carbo	on(1 v) oxide to the		0	D		
	-	ohere include				C.	R		
	A.			ion and transpiration		D.	S		
	B.	Respiration, o	•			E.			
	C.	•	•	nd respiration	35.		reaction E+F		ne backward reaction
	D.	Ozone deplet	tion, combu	stion and decay.			oured if the concer	ntration o	f
						A.	E is reduced		
29.	The po	stulate of Daltor	n's atomic tl	neory which still hold		B.	G is reduced		
	is that					C.	F is increases		
	A.	all element a	re made of	small indivisible		D.	E is increased		
		particles					\rightarrow	>	
	B.	•	lifferent ele	ements combine in a	36.	The p	products of the elec	ctrolysis (of dilute sodium
		simple whole					xide using platinui		
	C.	_		eated nor destroy ed		A.	sodium metal a		
	D.			e element are exactly		В.	hydrogen and o		_
		alike	Swill			C.	water and hydr		
						D.	water and sodi		
						ν.	water and south		
					37.	$PCl_{5(g)}$	$PCl_{3(g)} + Cl_{2(g)}$		
30.				66 mole of oxygen are		In the re	$PCl_{3(g)} + Cl_{2(g)}$ eaction above, a de	ecrease in	pressure will
			-	ure of 0.7 atmosphere,					1
	what is			gen in the mixture?		B.	increase the yie		
	A.	0.22 atmosph	ere			C.	accelerate the r		
	B.	0.33 atmosph	iere			D.	decelerate the r	reaction	

		\leftrightarrow									
38.		Arrhenius equation en the speed of a re			45.	When a salt loses its water of crystallization to the atmosphere exposure, the process is said to be					
	A.	catalyst	caction	ind its		A.	effervescence	B.	efflorescence		
	В.	activation energ	σv			C.	fluorescence	D.	deliquescence		
	C.	molecular collis				C.	Huorescence	D.	defiquescence		
	D.	heat of reaction			46.	Throo	drops of 1 0 mold	m ⁻³ colut	ion of NaOH are added		
39.				be liberated if the same	40.	to 20	Three drops of 1.0 mol dm ⁻³ solution of N to 20 cm ⁻³ of a solution of pH 8.4. The pH solution will be				
39.				ated 0.65 g of zinc is		A.	less than 8.4	В.	greater than 8.4		
	suppl		iai iioci	ated 0.05 g of zine is		C.			at of pure water.		
	A.	8.04 g	B.	4.02 g		C.	unantered D. Ci	ose to th	at of pure water.		
	C.	2.01 g	D.	1.00 g							
	C.	2.01 g		65, Hg = 201]							
			[Z11 -	- 05, 11g = 201]	47.	Tatra	oxosulphate (VI) a	cid hurns	the ckQin by		
40.	When dissolved in water, NaOH flakes show				- 77.	A.	dehydration	B.	hydrolysis		
40.	A.	a rapid reaction		Hakes show		C.	hydration	D.	heating		
	В.	a slow reaction				٠.	11) 01401011	2.			
	C.	an exothermic of	hongo		48.	The	substance least co	ncidara	d as a source of		
	D.	an endothermic	_		40.		onmental pollution		a as a source or		
	υ.	an chaothernne	change			A.	uranium	115			
<i>1</i> 1	Steam	changes the color	ır of anh	ydrous cobalt (11)		В.	lead compound	ile.			
41.		de from	ii Oi aiii	lydrous cobait (11)		C.	organphosphoi		mnounds		
	A.	blue to white	B.	white to green		D.	silicate mineral		inpounus		
	C.	blue to pink	D.	white to green white to red		ъ.	Sificate minieral	.			
	C.	orde to princ	ъ.	winte to red	49.	Then	roperty which make	es alcohol	soluble in water is the		
42.	Which	h of the followin	g solut	ions containing only		A.	ionic character	os arc onor	Soldolo III Water Is the		
				ogen gas when reacted		В.	boiling point				
		nagnesium metal?	11) 611	Spen gus when reacted		C.	covalent nature	2			
	A.		dm ⁻³	B. $1.0 \times 10^{-6} \text{ mol dm}^3$		D.	hydrogen bond				
	C.	$1.0 \times 10^{-4} \text{ mol}$	dm ⁻³	D. $1.0 \times 10^{-2} \text{ mol dm}^{-3}$		2.	njurogen com				
				_ , _ , , , _ , _ , , , , , , , , , , ,	50.	The fi	arring of kettles is a	caused by	the presence in water		
43.	The se	olubility of a salt o	f molar	mass101 g at 20°C is		of			F		
				is dissolved completely		A.	calcium hydros	entrioxo	carbonate (1V)		
				e resulting solution is		В.	calcium trioxocarbonate(1V)				
	A.	saturated	B.	unsaturated		C.	calcium tetraox		•		
	C.	supersaturated	D.	a suspension.		D.	calcium hydrox		` '		
44.	25 cm ³ c	•		Na CO requires 20cm ³			·				
	of a so	olution of HCl for ne		tion. The concentration							
		HCl solution is		0.4 1.5 -3							
	A.	0.2mol dm^{-3}	B.	0.4mol dm^{-3}							
	C.	$0.5 \mathrm{mol} \mathrm{dm}^{-3}$	D.	0.6 mol dm^{-3}							

1. What volume of oxygen is produced from the Chemistry 2003

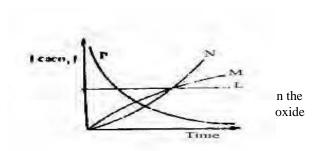
A.

burning

B.

adsorption

- 7. The noble gases owe their inactivity to octet configuration B. cyclic shape C. hexagonal shape D. obtuse configuration 8. According to the kinetic theory, an increase in temperature causes the kinetic energy of particles to A. decrease B. increase C. remain constant D. be zero 9. 1. II $N = Is^2 2s^2$ $O = Is^2 2s^2 2p$ IIIIV From the above, which of the following pairs is likely to be paramagnetic? A. I and II B. I and III C. I and IV D. I and IV 10. A gas exerts pressure on its container because some of its molecules are moving faster than A. others B. of the collision of the molecules with each other C. of the mass of the molecules of gas the molecules of a gas collide with walls of the D. container. 11. When cathode rays are deflected onto the electrode of an electrometer, the instrument becomes positively charged A. negatively charged C. bipolar 12. The weakest attractive forces that can be observed between two molecules is A. ionic B. covalent C. coordinate covalent D. Van der Waals. A consequence of global warming is 13. A. air pollution B. water pollution C. increased humidity D. flooding 14. Which of the following ions is acidic? A. K^{+} В. NO. C. D. H,O 15. The structural component that makes detergent dissolve more quickly in water than soap is A. -SO³-Na⁺ B. -COO Na⁺ C. -SO, Na+ D. -COO-K+ A liquid that will dissolve fat is 16. A. hydrochloric acid calcium hydroxide B. C. kerosene D. water
- A. 0.97 g B. 9.70 g C. 19.42 g D. 97.10 g $[K CrO = 194.2 \text{ g mol dm}^{-1}]$
- 18. Farmlands affected by crude-oil spillage can be decontaminated by
 - A. adding acidic solution
 - B. using aerobic bacteria
 - C. pouring water on the affected area
 - D. burning off the oil from the area.
- 19. When 10g of sodium hydroxide is dissolved in 100cm³ of water, the solution formed is approximately
 - A. 0.01 mol dm⁻³ B.
 - C. 0.25 mol dm⁻¹ D. 0.50 mol dm⁻¹
 - [Na = 23, H=1, O=16]


0.10mol dm⁻¹

- 20. A change in the temperature of a saturated solution disturbs the equilibrium between the
 - A. dissolved solute and the solvent
 - B. Solvent and the undissolved
 - C. Dissolved solute and the undissolved solute
 - D. Dissolved solute and the solution.
- 21. If an equilibrium reaction has H>0, the reaction will proceed favourable in the forwarddirection.
 - A. high temperature
 - B. any temperature
 - C. low temperature

22.

D. minimum temperature

Δ

- 23. s that
 - A. electrons are consumed
 - B. oxidation is involved
 - C. ions are reduced
 - D. electrode dissolves
- 24. Which of the following will change when a catalyst is added to a chemicalreaction?
 - A. The activation energy
 - B. The potential energy of the reactants
 - C. The heat of reaction
 - D. The potential energy of the products.

25.	If Y is an oxidizing agent that reacts with a reducing agent, Z, which of the following is correct?		C.	Ca	D.	Sn			
	A. Y increases in oxidation numberB. Y becomes reduced	34.	Which of the following statements is true of sulphur (1V) oxide?						
	C. Z loses protons		A.		c totraov	zocul n hai	te(V1) acid with water		
	D. Z gains protons.		В.		odourle	-	ic(VI) acid with water		
	D. Z gams protons.		C.		acidanl	_			
26.	When at aquilibrium, which of the reactions below will		D.			•	e with acidified barium		
20.	When at equilibrium, which of the reactions below will shift to the right if the pressure is increased and the		D.	chlorid	_	лестриан	e with acidified barruin		
	shift to the right if the pressure is increased and the			Cilioria	e.				
	temperature is kept constant . A. $2SO_{3(c)} - 2SO_{2(c)} + O_{3(c)}$	35.	The solt that will farme a marrie to the solt that the						
	B. $2SO_{3(g)} 2CO_{2(g)} + O_{2(g)}$	33.	The salt that will form a precipitate soluble in excess ammonia solution is						
	C. $2H_{2(2)} + '!O_{2(2)} = 2H_{2}O_{2}$		A.	Ca(NO		B.	$Cu(NO_3)_2$		
	$\begin{array}{lll} \text{A.} & 2\text{SO}_{3(g)} & 2\text{SO}_{2(g)} + \text{O}_{2(g)} \\ \text{B.} & 2\text{SO}_{2(g)} & 2\text{CO}_{(g)} + \text{O}_{2(g)} \\ \text{C.} & 2\text{H}_{2(g)} + \text{'!O}_{2(g)} & 2\text{H}_{2}\text{O}_{2(g)} \\ \text{D.} & 2\text{NO}_{(g)} & \text{N}_{2(g)} + \text{O}_{2(g)} \end{array}$		C.		O_3),		$Al(NO_3)_2$		
	$21 \cdot 3 \cdot (g) \qquad 22 \cdot 3 \cdot (g)$		C.	Wig(ive	$J_{3}J_{2}$	ъ.	$AI(1 \cup_3)_2$		
27.	In the electrolysis of a concentrated solution of sodium	36.	The m	netal liberat	tes hydro	ogen fron	n cold water in bubbles		
	chloride using inert electrodes, which of the following		only i		•				
	ions are dischapge at the cathode and anode		A.	Na		B.	K		
	respectively? →		C.	Ca		D.	Al		
	A. Na^+ and $Cl^- \rightarrow B$. Na^+ and OH^-								
	C. H^+ and QH^- D. H^+ and CI^-	37.	Chlor	ine gas tur	ns a dan	np starch	n-iodine paper		
			A.	pink		В.	colourless		
28.	$CO_{(g)} + H_2O_{(g)} CO_{2(g)} + H_{2(g)}$		C.	red		D.	dark blue		
	From the reaction above, calculate the standard heat								
	change if the standard enthalpies of formation of $CO_{2(g)}$, $H2O_{(g)}$ and $CO_{(g)}$ in kJ mol ⁻¹ are -394 , -242 and -110	38.	The n	nodern pro	cess of	manufac	turing steel form iron		
	$_{,}^{\rm H2O}_{(g)}$ and CO $_{(g)}$ in kJ mol ⁻¹ are -394, -242 and -110		is by						
	respectively.		A.	treatme	ent with	acids			
	A. $-262 \mathrm{kJmol}^{-1}$ B. $-42 \mathrm{kJmol}^{-1}$		B.	oxidatio	on				
	C. $+42 \text{ kJmol}^{-1}$ D. $+262 \text{ kJmol}^{-1}$		C.	blast re	duction	1			
	\rightarrow		D.	treatme	ent with	alkalis			
29.	When sugar is dissolved in a tea, the reaction is always								
	accompanied by	39.							
	A. positive entropy change								
	B. negative entropy change								
	C. no entropy change								
	D. a minimum entropychange.								
30.	Which of the following is an electrolyte?								
50.	A. Alcohol								
	B. Sodium acetate solution			n					
	C. Solid potassium hydroxide			11					
	D. Mercury			بالسير	-m -		Towns at the same of the same		
	2. 1.201001.9		Pietro	di di	15-1	7 5			
31.	Chlorine gas is prepared in the laboratory by		0.00			0 0			
	A. adding concentrated hydrochloric acid to solid		(The A	b	and the	od		
	manganese (1V) oxide				1	\mathbf{G}	The December		
	B. adding concentrated tetraoxosulphate (V1)	40.]		- 1	11111111	() ten visite		
	acid to solid sodiumchloride			2.2					
	C. dropping concentrated hydrochloric acid onto		B.	CH ₃ ²² CH					
	potassium tetraoxomanganate (V11) crystals		C.	$C_2 H_2 B_1$	r_2				
	D. oxidizing concentrated hydrochloric using		D.	$CHBr_3$					
	potassium heptadichromate (V1) crystals.								
		41.					containing carbon		
32.	Metal of the transition series have special properties		hydro	gen and ox	xygen in	the ratio			
	which are different from those of groups 1 and 11		A.	3: 1:1		В.	2:1:1		
			C.	1: 2:1		D.	1:1:1		
	elements because they have partially filled		**						
	A. s orbitals B. p orbitals	42		any isomer	_	-	have?		
	C. d orbitals D. f orbitals		A.	6	B.	5			
22			C.	4	D.	3			
33.	Hydrogen can be displace form a hot alkaline solution	40	Tri 1	.14	•	.1	1		
	by.	43.			_	-	is used in local soap		
	A. Fe B. Cu		makir	ng because	11 conta	นกร			

- B. sodium hydroxide
- C. potassium hydroxide
- D. soluble carbonates and hydrogen carbonates.
- 44. The formula for ethyl butanoate is
 - A. C.H.COOC.H. C.H.COOC.H. C. C₄H₀COOC₂H₅ D. C2H2COOC4H0
- The type of reaction that is peculiar to benzene is 45.
 - addition A. B. hydrolysis
 - C. polymerization D. substitution
- Ethanol reacts with excess acidified K₂Cr₂O₇ 46.
 - ethanedioc acid B. ethanol
 - C. ethyl ethanoate D. ethanoic acid
- A compound contains 40.0% caron 6.7% hydrogen and 47. 53.3% oxygen. If the molar mass of the compound is 180, find the molecular formula.
 - A. CH₂O C.
- C,H,O,
- D. $C_6H_6O_3$
- $C_6 \overline{H}_{12} O_6$ [H=1, C=12, O=16]

- 48. The process by which atoms are rearrange into different molecular structures in the petroleum refining process is referred to as
 - A. catalytic cracking B. hydrocracking
 - C. plolymerization D. reforming
- 49. Which of the following is found in cotton
 - Starch A.
- B. Cellulose
 - C. Fat D. Oil
- 50. The principal constituent of natural gas is
 - methane
- B. ethane
- C. propane
- D. butane.

Chemistry 2004

- In the electrolysis of brine, the anode is 1.
 - A. Zinc
 - B. Platinum
 - C. Carbon
 - D. Copper.
- $N_2Q_{(g)} \longleftrightarrow 2NO_{2(g)}$ 2.

In the endothermic reaction above, more product

- formation will be favoured by A. a decrease in pressure
- B. a decrease in volume
- C. an increase in pressure
- D. a constant volume
- The oxidation state of Chlorine in HClO4 is 3.
 - A. -1
- В.
- C. +7
- +1D.
- 4. Which of the following hydrogen halides has the highest entropy value?
 - HBr A.
- B.

5

HF

- C. H1
- D. HC1
- 5. The mass of silver deposited when a current of 10A is passed through a solution of silver salt for 4830s
 - A.
- 54.0g
- B. 27.0g
- C. 13.5g
- D. 108.0g
- $[Ag = 108, F = 96500 \text{ C mol}^{-1}]$
- Which of the following acts as both a reducing and 6.
 - an oxidizing agent? A. H_2S
- B. CO_2
- H,
- D. SO,

- 7. Which of the following shows little or not net reaction when the volume of the system is decreased?
 - A. $2O_{3(g)} \longrightarrow 3O_{2(g)}$
 - B. $H_{2(g)} + l_{2(g)} > 2Hl_{(g)}$
 - $2NO_{2(g)} \xrightarrow{N2O_{4(g)}} N2O_{4(g)} + Cl_{2(g)}$ D.
- Given that $\triangle_{\text{H [CO]}}$ is -110.4 kJmol $\triangle_{\text{H [CO}_2]}$ is -393° kJmol⁻¹, the energy change for 8.
 - the reaction above is
 - -282.6 kJ A.
 - -503.7 kJ
- В. +503.7 kJD. +282.6 kJ
- C.
- $ZnO + CO Zn + CO_2$
- 9. In the reaction above, Zinc has been
 - A. displaced
- oxidized В.
- C. reduced
- D. decomposed.
- 10. What volume of gas is evolved at s.t.p. if 2g of Calcium trioxocarbonate(iv) is added to a solution of hydrochloric acid?
 - $224 \,\mathrm{cm}^3$ A. C. 2240 cm³
- 112cm^3 B.
- $448 \,\mathrm{cm}^3$ D.
- [Ca = 40, C=12, O=16, Cl = 35.5, H= 1,Molar volume of a gas at s.t.p = 22.4 dm^3]
- 11. A chemical reaction is always associated with
 - a change in the nature of the reactants A.
 - B. the formation of new substances
 - a change in the volume of the reactants C. D.
 - an increase in the composition of one of
 - the substances,

12. When a solid substance disappears completely as a gas on heating, the substance is said to have					22.							
	underg A. C.	one. sublimation distillation	B. D.		allization oration		A. C.	saponification fermentation		ion above is known as. hydrolysis hydration		
13.		ution contains 4.9		•		23.				nydradon		
13.		ate the amount of c				23.	$CH_3COOH_{(g)} \longrightarrow CH_{4(g)} + CO_{2(g)}$ The reaction above is A. acidification B. esterification					
		40.0 ~	D	90 0 ~			C.	decarboxylatio				
	A. C.	40.0 g 0.8 g	B. D.	80.0g 4.0g			C.	decarboxyratio	ni D.caroc	oxyration.		
	C.				=32, H =1]	24.	A char A.	racteristic of the al substitution re		ily is		
14.	Vulcar	nization involves t	he remov	al of			В.	neutralization i				
1	A.	the single bond			ble bond		C.	addition reaction				
	C.	a polymer	D.	a mon			D.	elimination rea				
15.	The alkyl group can be represented by the general formula.							ion of undergroun		y metal ions is very		
		a.	D	СН			A.	alkalinity	B.	nitrate content		
	A. C.	C^nH^{2n}	В. D.	${\overset{C}{{}_{\scriptscriptstyle{n}}}}\overset{H}{{}_{\scriptscriptstyle{2n}}}{{}_{\scriptscriptstyle{-}}}$	-2		C.	acidity	D.	chloride content		
		n 2n+1		n 2n+2			C.	uciaity	Σ.	emoriae content		
16.	C H O	H <u>Conc. H</u> <u>SO</u> (aq) 180°C	>	Y		26.				of CuSO ₄ dissolved in		
	In the	reaction above, Y	ronrocon	4			A.	of water at 180°C 0.25	B.	0.13		
			represen		CH		C.	2.00	D.	1.25		
	A. C.	C ₂ H ₅ COOH CH ₃ OCH ₃		B. D.	CH ₄		C.	[Cu = 64, S = 64]				
	C.	CH ₃ OCH ₃		D.	C_2H_4			[04 01,5	32, 0	10]		
17.	In the p	production of soap,	concentr	ated sodi	um chloride	27.	Which	n of these compou	nds is a n	ormal salt?		
	is adde						A.	Na ₂ CO ₃	B.	NaHCO ₃		
	A.	saponify the soa	ap				C.	NaHSO ₄	D.	NaHS		
	B. emulsify the soap							-				
	C.	decrease the so	•		•	28.	A care	cinogenic substan	ce is			
	D. increase the solubility of the soap						A. C.	nitrogen (ll) ox asbestos dust		carbon (ll) oxide sawdust.		
18.	Oxyace A.	etylene flame is use evolves a tot he			ng because it	29.	What volume of 0.5 mol dm ⁻³ H SO will exactly neutralize					
	B.	dissociates to pr	roduce ca	rbon (1V	(i) oxide and		20 cm ⁻³ of 0.1 moldm ⁻³ NaOH solution?					
		oxygen					A.	$5.0\mathrm{cm}^{-3}$				
	C.	makes the iron			y quickly		B.	6.8cm ⁻³				
		nes with oxygen g					C.	8.3cm^{-3}				
19.	Which triple b	of these reagents ond?	can confi	irm the p	resence of a		D.	2.0cm ⁻³				
	A.	Bromine gas				30.	Calciu	ım tetraoxosulpha	te (V1) di	ssolves in water only		
	B.	Bromine water					sparin	gly to form a				
	C.	Acidified KMn	O_4				A.	colloid .	В.	solution		
20	Coppei	r (1) chloride					C.	suspension	D.	precipitate		
20.		CH ₃ C - C - CH ₂ - CH ₂ .				31	Hardr	ness of water is can	used by th	ne presence of the		
	H ₂ C - 0		CH.			31	ions o		used by th	ic presence of the		
	3 -	2 - 2-	- 3				A.	calcium and ma	agnesium			
		CH ₃ H					B.					
	The IU	PAC nomenclatu		compour	nd above is		C.					
	A.	3,4 -dimethylhe					D.	sodium and po	tassium			
	B.	2,3 –dimethylhe										
	C.	2 – ethylhexane				32.				y arrangement of the		
	D.	2 – ethylpentan	ie				molecules of a gas because they.					
							A.			other in the container		
21.		mer of C_5H_{12} is					B.	are too small in				
	A. 2 –ethyl butane						C.			ction betweenthem		
	B. C.	butane	10				D.	have no definit	te shape			
		2- methyl butan	ie									
	2- methyl propane											

33.	The sl	nape of the s-ort	oital is		41.	According to Charles' law, the volume of a gas becomes			
	A.	elliptical	B.	spiral		zero a	t		
	C.	circular	D.	spherical		A.	-100°C	B.	-273°C
						C.	-373°C	D.	$0^{\rm o}{ m C}$
34.	Which	n of the followin	g mixtures	of gases is likely to					
		n flame?			42.	When	steam is passed	over red-	hot carbon, the
	A.	Helium and n	eon				ances produced a		
	B.	Neon and nit				A.	hydrogen and		1) oxide
	C.	Neon and hy	-			В.	hydrogen and		
	D.	Nitrogen and	_			C.			oonate (1V)acid
						D.			arbon (1V) oxide
35.	The pr	operty of chlorin	ne which ca	use hydrogen chloride			J = 28 - 7 - 1	76	
				e molecule is its.	43.	Alum	inum hydroxide i	s used in th	e dyeing industry as a
	A.	electronegati				A.	dye	В.	dispersant
	C.	electron affii				C.	salt	D.	mordant
			,	Ž					
36.					44.	Trans	ition metals noss	ess variabl	le oxidation states
50.		-			77.		se they have.	CSS Variable	ic oxidation states
		(0)	1			A.	electrons in the	ne s orbita	le
		((•)	Nucleus			В.	electrons in the		
		1000	1 Anelecto	on		C.	partially filled		
						D.			trons in the p orbitals.
						D.	a variable nun	ibel of elec	dons in the porolais.
					45.	The	llotrope of carbo	n usad in t	he decolourization of
	In the	avnariment abo	vo Vicm	ixture of nitrogen,	٦٥.	sugar		ii uscu iii t	ne decolourization of
		n 1V) oxide and		ixtuic of introgen,		A.	soot	B.	lampblack
	A	*	В.	inert gas		C.	graphite	D.	charcoal
	C		D.	impurities		C.	grapinie	D.	Charcoar
	C	. water	D.	impurities	46.	Carbo	on is tetravalent b	20001160	
27	A ~i	on volume of me	thono diffi	reas in 20s. Harrilana	40.	A.			ital hybridized
37.				uses in 20s. How long		В.			
		the same condi		ur (V1) oxide to diffuse		Б. С.			carbon hybridize
				60 -		C.		in an the o	rbital of carbon are
	A. C.	40s	B. D.	60s 5s		D	equivalent	: l	2
	C.	20s				D.		in bour the	2s and 2p orbital are
		[C-	=12, H=1, S	–52, 0 –10]			equivalent.		
38.	Chlor	ine consisting o	f two isoto	opes of mass numbers	47.	Sodin	m metal is alway	s kent und	er oil because it
50.				atomic mass of 35.5.	₹7.		is reduced by		
				of the isotope of mass		В.	readily reacts		
	numbe		abundance	of the isotope of mass		Б. С.			earbon(1V)oxide
	A.	60	B.	20		D.	reacts vigoro		
	C.	75	D.	25		υ.	reacts vigoro	us on expo	sure to air.
	C.	13	υ.	ω	48.	A 11 a	e ara bast reserve	ad by	
20	Am ala	otuon oon ho od	dad ta a ha	logan atom to form a	48.	-	s are best prepare		£41 4 - 1 -
39.		ion with	ded to a na	logen atom to form a		A.			e of the metals
		8 valence ele	_4			В.		xture of the	eir metallic oxides
	A. B.					C.	arc-welding		
		7 valence ele				D.	electroplating		
	C.	2 valence ele			40	0 1 1	(177) 11 11		
	D.	3 valence ele	ectrons		49.	-	ur (1V) oxide ble	•	4
10	226 D	. XD . 1.1	1			A.	hydration	B.	reduction
40.		$\longrightarrow_{86}^{x} Rn + alpl$	na - particl	e		C.	absorption	D.	oxidation.
	88				5 0	T T 71 * 1	1 6.4 6.11		. 1 11 1.1
	A.	226			50.				n be collected by the
	B.	220					od of downward	•	TT 1
	C.	227				A.	Oxygen	В.	Hydrogen
	D.	222				C.	Chlorine	D.	Ammonia